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Abstract. Software development for data reduction and analysis at large research facilities is increasingly professionalized, and internationally
coordinated. To foster software quality and sustainability, and to facilitate collaboration, representatives from software groups of European
neutron and muon facilities have agreed on a set of guidelines for development practices, infrastructure, and functional and non-functional
product properties. These guidelines have been derived from actual practices in software projects from the EU funded consortium ‘Science
and Innovation with Neutrons in Europe in 2020’ (SINE2020), and have been enriched through extensive literature review. Besides guiding the
work of the professional software engineers in our computing groups, we hope to influence scientists who are willing to contribute their own
data treatment software to our community. Moreover, this work may also provide inspiration to scientific software development beyond the
neutron and muon field.
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1. Introduction
1.1. Software needs at user facilities

Large research facilities, such as neutron, x-ray or muon sources, provide researchers across a range of dis-
ciplines (including physics, chemistry, biology and engineering) with unique opportunities to explore properties
of materials. To achieve this, they operate a broad range of highly specialised instruments, each targeting a par-
ticular area of investigation. The structure of the generated datasets reflects the specific operation modes of the
instruments, and therefore requires bespoke data treatment software.

In most cases, the data treatment is conceptually and practically divided in two stages: reduction and analysis.
Typical data reduction steps are background subtraction, normalization to incident flux, detector efficiency cor-
rection, axis calibration, unit conversions and histogram rebinning. In a good first approximation, the outcome
is a function such as the static structure factor S(g), the dynamic structure factor S(q, w), the reflectivity R(q)
or the diffraction peak intensity I (hkl), which characterizes the sample with little remaining dependence on the
instrument details. In the subsequent data analysis, this function is interpreted, and often fitted with mathematical
models, in order to improve our understanding of the scattering target (sample).
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The major sources in our field are user facilities: They operate instruments primarily for externals users, with
different degrees of in-house research. In the early days many users had a special interest in the experimental
method, and analysed their data with their own tools. Into the 1990s, it was quite normal for a PhD thesis to consist
of a few scattering experiments on a single sample and a detailed analysis supported by some new software. With
increasing maturity of the experimental techniques, users are less interested in methodological questions; they
rightfully expect an instrument to just work, with the results obtained often contributing to a wider study. This is
reflected in more recent PhD theses and journal publications, where increasingly experiments at large facilities are
just one of several methods that are used to gain a complete understanding of the system under study.

Laboratory instruments bought from specialized manufacturers, such as the popular physical property measure-
ment systems used for magnetic, thermal and electrical characterisation of samples, come with fully integrated
software for experiment control and, to a varying degree, for data analysis. Well designed graphical interfaces
minimize training needs. When developing software for large facilities we should strive for no lesser quality stan-
dard — even if experimentalists are exceptionally forbearing with unstable software, counter-intuitive interfaces and
idiosyncratic commands, as long as they somehow succeed in treating their precious data.

In the past, much of the data treatment software in our field has been contributed by engaged scientists, who
developed it primarily for their own needs, then shared or published it. In particular, many instrument scientists
have increased the utility of their instrument by providing software tailored for the needs of their users. While
this software contains invaluable application-domain expertise, it often raises concerns about its long-term main-
tenance. There have already been cases where outdated computers had to be kept in operation because source code
was lost, or could not be recompiled. Therefore the development and maintenance of data treatment software needs
to be professionalised.

Most instruments have a lifetime of decades, with occasional refurbishments or upgrades. Therefore software
development is as a long-term endeavor. Solid engineering should facilitate maintenance and future updates. Most
instruments embody a basic design that is shared with a number of similar instruments at different facilities. This
opens opportunities to share software between similar instruments and across facilities. By sharing the develop-
ment, better use is made of limited resources, bugs are found earlier, the confidence in the correctness grows and
the scientific end users are better served.

1.2. From computer programming to software engineering

Software engineering has been defined as the “systematic application of scientific and technological knowledge,
methods, and experience to the design, implementation, testing, and documentation of software to optimize its
production, support, and quality” [145]. Software engineering goes beyond mere computer programming in that it
is concerned with size, time, and cost [321].

Size concerns the code base as well as the data to be processed. In either respect, programming techniques and
development methods that are fully sufficient at small scale may prove inadequate at large scale. With a growing
code base comes the need for developer documentation, version control and continuous integration. With big data
comes the need for optimization and parallelization. With involvement of more than one developer comes the need
for coordination and shared technical choices.

Time refers to both the initial development and the total life span of a software. No engineering overhead is
needed for code that is written in a few hours and run only once. However, for projects where the code will be used
for a considerable period, one needs to consider what kinds of changes shall be sustained. To support incremental
development, version control may already pay off after a couple of days. To react to changed requirements without
breaking extant functionality, good tests are essential. To keep a software running for years and decades, one must
cope with changes in external dependencies like libraries, compilers, and hardware [133].

Cost as the limiting factor of any large-scale or long-term effort means that we have to live with compromises,
and constantly decide about trade-offs [190, p. 15].

To become a good programmer and software engineer, one needs theoretical knowledge and understanding as
well as experience. Any programming course therefore involves exercises. Academic exercises, however, cannot be
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scaled to the size, complexity and longevity that are constitutive for engineering tasks. Engineering training there-
fore is mostly done on the job, but needs to be supported by continuous reading and other forms of self-education
[10, rule 2.2]. Professionalisation of scientific software development is now a strong movement, expressed for
instance in the take up of the job designation “research software engineer” (RSE), coined by the UK Software
Sustainability Institute [273] and adopted by a growing number of RSE associations [156].

1.3. The case for shared engineering guidelines

In engineering, established rules and available technologies still leave vast freedom for the practitioner to do
things in different ways. However, freedom in secondary questions can be more distracting than empowering.
Arbitrary, seemingly inconsequential, choices can become the root of long-standing incompatibilities. Any organ-
isation, therefore, needs to complement universal rules of the profession with more detailed in-house guidance
[260]. In our field, the minimum organisational level for agreeing on software engineering rules is either the
software project' or the developers’ group. Groups for scientific software, or specifically for data reduction and
analysis software, have been created at most large facilities. As some projects involve several computing groups
and some developers contribute to several projects, it is desirable to agree on basic guidelines across groups and
across projects.

Software groups from five major European neutron and muon facilities [73,125,143,144,212] came together
in the SINE2020 consortium [267] to define a set of guidelines for collaborative development of data treatment
software. This collaboration is continuing, including through the League of advanced European Neutron Sources
(LENS) [167]. The authors of this paper include software engineers and project managers at the aforementioned
five sources. The guidelines presented in the following are based on our combined experience. They improve and
update on material collected in SINE2020 [181].

1.4. Scope of these guidelines

This paper has been compiled with a broad audience in mind. We hope that our guidelines, beyond governing
work in our own groups, will also be taken into consideration by instrument responsibles and other scientists who
are contributing to data treatment software, as this would facilitate future collaborations. Aspects of our work may
also be of interest to RSEs from other application fields and to managers who want to get a better understanding
for the scope of software engineering and the challenges of long-term maintenance.

Our guidelines are meant not only for new projects but also for the maintenance, renovation, and extension
of extant code. In any case, with years, the distinction between new and old projects blurs. In our field, where
projects have a lifetime of decades, most of us are working most of the time on software initiated by somebody
else. Conversion to the tools and practices recommended here needs not to be sudden and complete, but can be
done in steps, and in parallel with work on new functionality.

This paper is at the same time descriptive and prescriptive. It documents our current best practices, gives manda-
tory guidance to our own staff, explains our choices to external collaborators and invites independent developers to
consider certain tools and procedures. In the following, each subsection starts with a brief guideline in a text box,
which is then discussed in detail. Section 3 describes the procedures and infrastructure that should be setup by a
software group, Section 4 addresses the functionality that is expected from data treatment software, and Section 5
gives recommendations for non-functional choices.

LAs customary in open-source or agile context [250], we use the term software project (or project for short) in a wide sense that includes
open-ended undertakings, contrary to the standard definition of a project as “a temporary endeavor” [233].
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1.5. Reproducible computation, FAIR principles and workflow preservation

While many of the points discussed in this paper hold true for software engineering or data treatment in general,
one concern is particularly pertinent for research code: reproducibility. Computational reproducibility is one of
several requirements for replication, and “replication is the ultimate standard by which scientific claims are judged”
[214].

In reasearch with scattering methods, there is no tradition of explicit replication studies. However, breakthrough
experiments on novel materials or discoveries of unusual material behavior motivate many follow-up studies on
similar samples. Erroneous conclusions would soon lead to inconsistencies, which would provoke further experi-
ments and deeper analysis until full clarification is reached. Potential sources of error include sample preparation,
hardware functioning, instrument control, and data treatment. Disentangling these is much easier if experimen-
tal data are shared and data treatment is made reproducible. As experiments are quite expensive, replicating and
validating data reduction and analysis should be among the first steps in scrutinizing unusual results.

Open data is encouraged, and increasingly requested, by research organizations. Broad consensus has been
reached that research data should be findable, accessible, interoperable, and reusable (FAIR) [17,45,316]. Software
is data as well, albeit of a very special kind. The FAIR principles, suitably adapated, can provide guidance how
to share and preserve software [150,157,166]. Functional aspects of software, on the other hand, are outside the
scope of these principles.

To make software findable and accessible, we recommend version control (Section 3.2.1), numbered releases
and digital object identifiers (Section 3.2.6), provenance information in treated data (Section 4.3), rich online
documentation (Section 5.9), and possibly the deployment in containers (Section 5.10.4). For interoperability,
we recommend versatile interfaces (Section 4.1), standard data formats (Section 4.2) and code modularization
(Section 5.4.1). To make code reusable, we emphasize the need for a clear and standard open-source license
(Section 5.1), and recommend the use of standard programming languages (Section 5.2.2) and of plain American
English (Section 5.3.2).

In the long term, the biggest risk to software reuse, and thereby to computational reproducibility, comes from
interface breaking changes in lower software or hardware layers [133]. To give a recent example, numeric code
that relied on long double numbers to be implemented with 80 bits no longer works on new Macintosh machines
as Apple replaced the x86 processor family by the arm64 architecture, with compiler backends falling back to the
minimum length of 64 bits required by the C and C++ standards. Strategies to reduce the risk of such software
collapse [133] include: Keep your software simple and modular (Section 5.4.1); wherever possible, use standard
components (Section 5.4.2); ideally, depend on external tools or libraries that have several independent embodi-
ments (in our example, long double never had more than 64 bits under the Visual Studio compiler, which should
have warned us not to rely on a non-standard extension); run nightly tests to detect defects as soon as possible
(Section 5.8.2). Backward compatibility can help to replicate old data analyses even if old software versions no
longer work (Section 5.10.2).

To replicate a data treatment, one needs to retrieve the data, the software, and the full parameterization of the
workflow (Section 4.1, Fig. 2). We must therefore enable our users to preserve enough machine readable informa-
tion so that entire data reduction and analysis workflows can be replayed. While this is relatively straightforward
for script-based programs (Sections 4.1.2—4.1.5), extra functionality must be provided if software is run through a
graphical user interface (Sections 4.1.1, 4.3).

2. How we wrote this paper

To get an overview of received practices in our field, we started this work with a questionnaire targeted at
five neutron software packages that were under active development and were partly funded by SINE2020. The
packages considered were Mantid [9,178], ImagingSuite [32,154,155], McStas [188,317,318], BornAgain [23,228]
and SasView [254]. Questions and answers are fully documented in a project report [181], which also contains some



J. Wuttke et al. / Guidelines for collaborative development of sustainable data treatment software 37

statistics and a summary of the commonalities. The empirical guidelines that emerged from this study became a
deliverable of work package 10 of the European Union sponsored consortium SINE2020 (Science & Innovation
with Neutrons in Europe) [267]. For the present publication we updated and extended the guidelines, based on
evidence from research and practice.

For each section of this paper, we searched for literature, using both Google Scholar and standard Google search
to discover academic papers as well as less formal work. We also (re)read a number of books [40,76,84,127,
134,183,191,246,248,290,323] and style guides [115,286,297], and looked through many years of the “Scientific
Programming” department in the journal Computing in Science & Engineering [46]. Other formative influences
include the question and answer site Stackoverflow [278], mailing lists or discussion forums of important libraries
(e.g. Scipy or Qf), conferences (or videorecorded conference talks) on software engineering or on single program-
ming languages, initiatives such as CodeRefinery [44] and the carpentries of the Software Sustainability Institute
[273]. Insights from these sources are reflected in numerous places below. References attest that our views and rec-
ommendations are mainstream. Much good advice has been found in blogs, and in books that risk strong opinions.
Most of these sources are about software engineering in general, not specifically about research software.

Each guideline in the final text has been approved by each of us. Even so, we do not claim that we are already
following all guidelines in all our own software efforts. During the years that led to the compilation of this paper
we learned a lot from each other and from the literature, and we continue to bring the gained insights to our own
work.

3. Procedures and infrastructure
3.1. Development methodology

3.1.1. Ideas from agile

Adapt agile methodology to your needs.

Over the past twenty years, the discourse on software development methodology has been dominated by ideas
from the Agile Manifesto [20,196]. Subsets of these ideas have been combined and expanded into fully fledged
methods like Extreme Programming (XP) [19], Scrum [258,259], Lean [227], Kanban [6], Crystal [42] and hybrids
of these like Scrumban [165] and Lean-Kanban [49]. For a critical review, we recommend the book by Bertrand
Meyer [191].

Many organizations that claim to be agile do not strictly adhere to one of the more formal methods, but have
adopted and adapted some agile ideas. This is also the case for our facilities: We all embrace agile but do not
consider it to be a panacea. To varying extent, our groups practice concepts like short daily meetings, retrospec-
tives, pair programming, user stories. Refactoring (Section 3.1.3), iterative workflows and continous integration
(Section 3.2.3) have become second nature to our teams. Indeed, good ideas from agile permeate much of this

paper.

3.1.2. Project management and stakeholder involvement

Involve user representatives.

Scrum introduced the notion of a product owner who represents the customers, “who champions the product,
who facilitates the product decisions, and who has the final say about the product” [222]. At our facilities, we have
no dedicated full-time person for this role. Regardless, it is an important insight that developers need a counterpart
who forcefully represents the interests of end users.

To identify such representatives in our application domain, the distinction of data reduction versus analysis
software (Section 1.1) comes into play. For data reduction, the instrument responsibles are the natural mediators
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between the user community at large and the software developers; they have full knowledge of the instrument
physics, and they get direct feedback from their users when there are any problems with the software. Indeed, we
have had excellent results with instrument scientists guiding our work and testing our software prototypes. Some
facilities also have staff (e.g. instrument data scientists) whose job includes the task to liaise with users, instrument
teams, and developers. For a multi-facility software like Mantid, formal governance bodies are required [179].
While instrument scientists can help with the customization to their respective instruments, they may have quite
different requirements for the common parts of the software; these divergent wishes need to be bundled, reviewed,
and reconciled.

In contrast, many software projects in the realm of data analysis are steered by a scientist who acts as product
owner and chief maintainer in one person. This is essentially the “benevolent dictator” management model [92,
142,247], which has proven viable for large and important open-source projects like Linux, Emacs, Python, and
many more [313]. SasView, governed by a committee [255], seems a rare exception in our field. Many owners
of analysis software are scientists who originally wrote the software for their own research needs, then started to
support a growing user community. If such a creator retires, and maintenance is taken over by software engineers
without domain knowledge, then the loss of application-domain knowledge must somehow be compensated from
within the user community. The community must be empowered to articulate their needs, for instance through
online forums, user meetings, webinars, not to mention essentials like an issue tracker and a contact email. In
addition, users can participate in formal or de facto steering committees or user reference groups.

3.1.3. Refactoring

Keep code clean through test-covered refactoring.

“Refactoring is the process of changing a software system in such a way that it does not alter the external
behavior of the code yet improves its internal structure” [84]. We refactor before and after changing external
behavior, both to lay the groundwork and to clean up the code. Continual refactoring prevents the accumulation of
technical debt and keeps the code readable, modular and maintainable. Through refactoring, code from different
sources is made more homogeneous, and brought in line with received design principles (Section 5.4.3). Typical
targets of refactoring are known as code smell [84,183,288], which include inaccurate names, code duplication,
overly large classes, overlong functions, more than three or four arguments to a function, chains of getter calls, etc.

Even trivial refactorings, like the renaming of variables, are error-prone. Automatic editing tools can help to
avoid certain errors, at the risk of introducing errors of other kinds. Each single refactoring should be separately
committed to the version control (Section 3.2.1) so that it can easily be reverted if needed. Good test coverage is a
precondition; often, it is appropriate to add a new test to the regression suite (Section 5.8.1) before undertaking a
specific refactoring step.

In private enterprises, it is often hard for developers to assert the need for refactoring while management presses
for new functionality. In our non-profit setting, we must be no less wary of the opposite danger of procrastinating
in refactoring without adding value to our product.

At times, the complexity of a software feels so overwhelming that developers will propose to rewrite big parts
or all of the “legacy” code [183, p. 5]. We have had bad experiences with such initiatives. Legacy code, for all its
ugliness and complexity, “often differs from its suggested alternative by actually working and scaling” [285]. There
is considerable risk, well-known as the second-system effect [29], that the new project, in response to all lessons
learned from the previous one, is so heavily overengineered that it will never be finished. On the other hand, if
there is need for architectural improvements, then piecemeal refactoring without sufficient upfront design is also
“terrible advice, belonging to the ‘ugly’ part of agile” [191]. We therefore recommend that major changes to a
software framework be proposed in writing, and reviewed, before substantial time is invested into implementation.
Innovative ideas may require development of a prototype or a minimum viable product, or some other proof of
concept.

For significant renovations, or for writing code from scratch, work should be broken down into packages and
iterations such that tangible results are obtained every few months at most, and not much work is lost in case a
developer departs. For critical work, more than one developer should be assigned from the outset if possible.



J. Wuttke et al. / Guidelines for collaborative development of sustainable data treatment software 39

3.2. Development workflow and toolchain

3.2.1. Version control

Put code and related artifacts under Git version control.

Source code, and all other human-created artifacts that belong to a software project, should be put under ver-
sion control [215,275]. Version control (also called revision control or source code management) is supported by
dedicated software that preserves the full change history of a file repository. With each commit, the timestamp,
the author name and a message are logged. Any previous state of any file can be restored. This is useful when
some modification of the code either did not meet expectations or broke functionality. For particularly difficult bug
hunts, bisection on the history can help.

Working habits can and should change once version control is ensured. One needs no longer to care about safety
copies. One can take more risks, such as using automatic editing tools as it is easy to revert failed operations.
Since deleted code can easily be restored, there is hardly a good reason left for outcommenting used code or for
maintaining unused files [172]. And most importantly, version control makes it safe and easy for developers to
work in parallel on branches of the code. Conflicting edits have to be resolved before a branch is merged back into
the common trunk.

We recommend the version control software Gir [35,43,95], written by Linux founder Linus Torvalds [298],
which is the de facto standard for new projects in many domains, including ours. The dominance of Git is cemented
by repository managers like GitHub and GitLab (Section 3.2.2). For a curated list of Git resources, see [13].

3.2.2. Repository manager

Use Git-based repository management.

It is straightforward to install and run a Git server on any internet facing computer. The non-trivial restriction
is “internet facing”, which requires a permanent URL and appropriate firewall settings. For collaborative software
development it is convenient to use a web-based repository manager that combines Git with an issue tracker and
additional functionality for work planning, continuous integration (CI, Section 3.2.3), code review (Section 3.2.5),
and deployment (Section 3.2.6).

The best known of these services is GitHub [96]. As for many other cloud services, it has a “freemium” business
model, offering basic services for free, especially for open-source projects, and charging money for closed projects
or when additional features are required. An interesting alternative is GitLab which, beyond offering freemium
hosting [100], also releases their own core software under a freemium model. New features first appear in an
Enterprise edition, but after some time they all go into an open-source release [101]. Some important creators of
open-source software like Kitware (CMake, ParaView, VTK [107]) are running their own GitLab instance, and so
do several of our institutions [105,106,108]. For collaborative projects it may be argued that hosting on a “neutral
ground” cloud service is preferable for avoiding perceived ownership by a single institution.

In spite of some differences in terminology and in recommended work flows, GitHub and GitLab are very
similar. Each of them is used through a terse, no-nonsense web interface that appeals to power users but presents a
certain barrier to newcomers [98,102]. As external users are more likely to be familiar with GitHub, it may help to
mirror GitLab repositories at GitHub [103].

3.2.3. Workflow; continuous integration, delivery, and deployment

Choose a workflow that fits well with Continuous Integration, Delivery or/and Deployment.

In a small or very stable software project, where no edit conflicts are to be expected, all development may take
place in one single main (or master) branch. If more than one developer is contributing at the same time, then work
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Fig. 1. (a) Development workflow according to the Git Flow model [65,186]. Feature branches are merged into develop. At some point, a
release branch is started, which is frozen for new features. The release (yellow disk) is published after the release branch is merged into main.
Occasionally, a hotfix is applied to main, and merged back into develop. (b) Development workflow with Continuous Integration (shortlived
feature branches, frequent mergers) and Continuous Delivery (frequent releases, taken directly from the develop branch). (c) Ditto, but without
develop branch; all changes go directly into main. This is promoted under the name Trunk Based Development [120]. (d) Workflow with
Continuous Deployment, where the application is deployed after each successful merger (colored disks). If a critical bug is detected (red
exclamation mark), and attributed to a recent merger (red disk), then it is easy to reset main to the last unaffected software state, and deploy
that one.

hoty

is usually done in distinct feature branches of the code. At some point, successful developments are merged back
into a common branch. Before the merger is enacted, possible edit conflicts must be resolved, integration tests must
pass, and the changes should be reviewed.

The project specific workflow regulates the details of this. For quite a while, best practice was a workflow
proposed in 2010 [65] and later termed Git Flow [186], summarized in Fig. 1a. This workflow is still appropriate
if there is need to freeze a release branch during a period of manual testing.

More recently, the trend has gone towards shorter lived side branches, and more frequent integration into the
common trunk. This is called Continuous Integration (CI) [224]. It heavily depends on fast and automated build
and test procedures, discussed in the next Section 3.2.4. If CI procedures and developer discipline ensure that the
common trunk is at any time in usable state, then it takes little additional automation to build all executables after
each merger, including installers, and other deliverables that would be needed to deliver a new software version to
the users. This is called Continuous Delivery (CD) [224], sketched in Fig. 1b. Automation of release procedures
should also extend to the documentation, though human written content still needs to be kept up to date by humans.

With CI/CD, the old open-source advice “release early, release often” [246] is no longer thwarted by tedious
manual release procedures, and we can “deploy early and often” [22]. In contrast, our end users who have to install
the data analysis software on their own computers may perceive frequent releases more as an annoyance than as a
helpful service. Each project needs to find the right balance.

When there are no more feature freezes and release branches, then there is no strong reason left to maintain
separate develop and main branches. Rather, all changes can be merged directly into main, as sketched in Fig. lc.
This is promoted under the name Trunk Based Development [120].

Confusingly, the abbreviation CD is also used for Continuous Deployment [224], which goes beyond Continuous
Delivery in that there are no releases anymore. Instead, new software versions are automatically deployed with high
frequency, possibly after each single successful merger into the common trunk, and with no human intervention.
One advantage is the ability to react swiftly and minimize damage after a critical bug is discovered (Fig. 1d).
Arguably, Continuous Deployment is the best choice whenever deployment is under our own control. This is the
case for cloud services (Section 5.2.1), or when data reduction software is only run on local machines.

3.2.4. Build and test automation

Use the repository manager to automatize tests and builds.
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Continuous Integration (Section 3.2.3) depends on automation of build and test procedures. To control these
procedures, some projects still use dedicated CI software like Jenkins. Nowadays, essential CI control is also
provided by repository management software (RMS, Section 3.2.2). When a developer submits a Merge Request
(GitLab) or Pull Request (GitHub), then the RMS (or other CI controller) launches build-and-test processes on
one or several integration servers. Only if each of them has terminated successfully will the submitted change
set be passed on for code review (Section 3.2.5) and then for merger into the common trunk (develop or main,
Section 3.2.3).

Usually, the modified software has to be built and tested under all targeted operating systems, using as many
integration servers, either on distinct hardware or in containers (e.g. Docker containers [63]). On each integration
server a light background process runs, called the runner [97,104]. The runner frequently queries the RMS for
instructions. Upon a Merge (Pull) Request, the RMS finds an available runner for each target platform and sends
each of these runners the instruction to launch a new job. This then causes the runners to fetch the submitted change
set, compile and build the software, run tests and possibly perform further actions according to a customized script.
The progress log is continuously sent back to the RMS. Upon completion of the job, the runner sends the RMS a
green or red flag that allows or vetoes the requested merger.

Groups or projects need to decide whether to run CI on their own hardware or in the cloud. For small projects
the workstations under our desks may suffice. If there are several developers in a project, more fail-safe hardware
is in order; if builds or tests are taking more than a few minutes, it is desirable to use a powerful multi-processor
machine.

Alternatively, we could run our CI/CD processes on preconfigured cloud servers that are typically offered as
freemium services [312]. Specifically, at the time of writing this paper, both GitHub and GitLab offer a practically
unlimited number of build/integration/deployment jobs to be run on their free accounts. This may save us from
buying and maintaining hardware, but at the expense of having less flexibility and occasional processing delays
as free services are queued with low priority when computing centers are busy with payed jobs. Whether local or
cloud based CI is less onerous to set up and keep running is an important question, which we must leave open.

Since the tests are an important part of a project’s code base, we discuss them in more detail below, in the section
on software requirements (Section 5.8).

3.2.5. Change review

Organize routine review of code changes.

Projects should define rules for reviewing proposed changes. Typically, a review is required for each Merge
(Pull) Request. It takes place after all tests passed and before the merger is enacted. Repository management
software (RMS, Section 3.2.2) provides good support for annotations and discussions.

Usually, the invitation to review a changeset goes to the other members of the team. The main purpose of code
review [14,253] is quality assurance: prevent accidents, discover misunderstandings, maintain standards, improve
idiom, keep the code readable and consistent. In some cases, the reviewer should build and run the changed code
to check its validity, performance or other technical aspects.

Reviewers must be mindful not to hurt human feelings, the more so as all comments in our open-source reposi-
tory management systems will remain worldwide readable indefinitely. What language is appropriate is very much
culture dependent, and should be attuned to the reviewee. Improper bluntness can start undesirable power games
[60]. Questions are better than judgements [122]. As soon as general principles, esthetic concerns or emotions get
involved, it is advisable to change the medium, talk with each other, and possibly ask other developers or superiors
for pertinent rules or specific guidance.

Besides quality assurance and education of the submitter, another purpose of code review is knowledge transfer
from the submitter to the reviewer who is to be kept informed about changes in the code.

The RMS can be configured such that explicit approval from authorized parties is needed before a merger can
be enacted. In this respect, habits and opinions vary across our groups and projects. Some enforce a strict four-
eyes principle, either through RMS configuration or convention, while others entrust experienced developers the
discretion to merge trivial or recurring changes without waiting for formal approval.
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3.2.6. Releases

Strive for regular releases.

A well-known adage from the early days of the open-source movement recommends “Release early, release
often.” [232,246]. If a software stagnates without fresh releases for more than a year, users will wonder whether
the project is still alive. In contrast, frequent releases can be inconvenient for users who can end up spending
considerable time reinstalling the software and adapting to its changes. Typically, our projects are aiming for two
to four releases per year. The frequency might increase if software is deployed as a cloud service (Section 3.2.3).
Release previews may be sent out to special users for extended manual testing.

Avoid changes that break other people’s software or analysis pipelines [132,133,232]. If such changes become
inevitable, discuss them in advance with your users, communicate them clearly, bundle them in one single release,
and mark them by an incremented major version number [231]. If backward compatibility cannot be maintained it
might still be possible to provide conversion scripts for user inputs.

It is good practice for a project to have a low-traffic moderated mailing list. In particular, this list should be used
for announcing new releases. The announcement should contain an accurate but concise description of changes.
The same information should also be aggregated in a change log (e.g. a file called “CHANGELOG” in the top-
level directory). It “should be easily understandable by the end user, and highlight changes of importance, including
changes in behavior and default settings, deprecated and new parameters, etc. It should not include changes that,
while important, do not affect the end user, such as internal architectural changes. In other words, this is not simply
the annotated output of git log” [118].

To facilitate citation, it is advisable to mint a digital object identifier (DOI) for each release. This can be ac-
complished using a free cloud service [77]. The most frequently used service, Zenodo [330], can be automatically
triggered from GitHub.

4. Functional requirements

Functional requirements specify how the software shall transform input into output [281]. Obviously, these
requirements are different for each application. Nonetheless, some fairly generic requirements can be formulated
with respect to the more formal aspects of software control, data formats, logging, and plotting.

4.1. User interfaces

From the standpoint of theoretical computer science there is no fundamental difference between software, data,
and parameters, they are all input to a Turing machine [134, Section 3.2], as outlined in Fig. 2. In practice, how-
ever, it matters that code, data, and parameters have a different origin and variability. Software for data reduction
and analysis is ideally provided by the instrument operators, and is long-term stable with occasional updates. Data
sets are immutable once generated; their format is defined by the instrument operators, their content comes from
an experiment that is steered by an instrument user. Parameterization is chosen, often iteratively, by the investiga-
tors who thereby adapt the generic software to their specific needs. There are different ways to let users control
the software, notably graphical user interface (GUI), shell commands, command-line interface (CLI), application
programming interface (API) for scripting, and configuration files, to be discussed in the following subsections.

4.1.1. Graphical user interface

A GUI facilitates interactive work. However, do not underestimate the development effort.

A well-designed GUI gently guides a user through a workflow, organizes options in a clear hierarchy of menus,
and provides a natural embedding for data visualization and parameter control. A GUI tends to have a flatter
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Fig. 2. Agents (blue) and data (orange) in experiment analysis. While code, experimental data, and parameters are exchangeable from the stand-
point of theoretical computer science, they have different lifetime and are under control of different agents (instrument operator vs instrument
user). The dotted feedback arrow indicates that the investigator may refine the parameterization iteratively in response to the output.

learning curve than a text-based interface, to the point that users familiarize themselves with a GUI through trial
and error rather than by reading documentation.

These advantages are so strong that almost all modern consumer software is steered through a GUIL. Most indus-
try built laboratory instruments are also provided with some kind of GUI. This conditions the expectations of our
users, who tend to regard a text-based interface as outdated and unpractical.

On the downside, serial data processing through a GUI can be tedious. Developers should be prepared to meet
user demands for automating repetitive workflows. When there is need for high flexibility and for programmatic
constructs like loops and conditionals, then it is not advisable to stretch the limits of what a GUI can do; rather we
should provide a scripting interface — either instead of a GUI, or complementary to it.”

Be warned that a GUI is difficult and time-consuming to develop and maintain, the more so if developers from
a science background are not trained for this kind of work. One hard problem is designing views and workflows
to provide a good user experience, another one is getting the software architecture right. As several data repre-
sentations (views) may need to change in response to user actions or external events, a naive use of the signalling
mechanism provided by a GUI toolkit like Qt (Section 5.4.2) can result in hopeless spaghetti [268]. Cyclic de-
pendences can stall or crash the GUI in ways that are difficult to debug. GUI tests take extra effort to automatize
(Section 5.8.6).

Therefore, we recommend thinking carefully before allocating scarce resources to a GUIL. A GUI is clearly a
useful tool for supporting interactive, heuristic work, especially if the user is to interact with visualized data, e.g.
by setting masks in histograms. For more involved visualization tasks, however, it may be best to refer users to
some of the outstanding dedicated tools that exist already, especially so for imaging applications.

4.1.2. Shell commands

Non-interactive tools should be launched through shell commands.

If a program for inspecting or transforming data does not require interactive control, then it should be packaged
as an independent application that can be launched from the operating system’s command prompt. Parameters,
including paths of input and output files, can be supplied as command-line arguments.

Use cases include tabulating metadata or statistics from a set of raw data, summarizing contents of a binary
file and transforming data between file formats. A number of such tools are available for the HDFS5 binary format
[124], and more specifically for the NeXus format [304, Ch. 7].

ZSeveral of our software projects (BornAgain, Mantid, SasView) have both a GUI and a script APL. In BornAgain, users can set up a
simulation model in the GUI, and then export it to a Python script.



44 J. Wuttke et al. / Guidelines for collaborative development of sustainable data treatment software

4.1.3. Command-line interface

The traditional command-line has few remaining use cases.

An application with command-line interface (CLI) is associated with a terminal window and prompts the user
for keyboard input. It can take the form of a dialogue where the user has to answer questions, or it provides a single
prompt where users enter commands defined by the software. Hybrid forms also exist. A CLI is much easier to
develop than a GUI, and therefore is appropriate for prototypes and niche applications.

A CLI in dialogue form (and equivalently, a GUI based dialogue with multiple popup windows) is acceptable
for configuration work that rarely needs to be repeated. As a simpler alternative, however, consider using instead a
configuration file that can be modified in a text editor (Section 4.1.5).

A CLI with menu prompt can be a powerful tool that gives users full control through concise commands. The
disadvantages are a steep learning curve and the risk of feature creep: To save users from repetitious inputs, the
concise commands tend to evolve into a Turing-complete ad-hoc language “that has all the architectural elegance
of a shanty town” [201, p. 161]. It is therefore preferable to base a CLI on an established general-purpose scripting
language, as discussed in the next subsection.

4.1.4. Python interface

A Python interface is better than a self-invented command-line language.

Python is the most widely known programming language in large areas of science [216]. It is taught in many
universities, and comes with lots of libraries and modules for scientific applications (Section 5.4.2). Python scripts
can also be run from the popular Jupyter notebook [75,116,217]. Such a notebook is able to display a large variety
of graphical elements like charts, plots and tables. Notebooks are usually accessed through a web browser, and are
therefore natural candidates for “software as a service” (Section 5.2.1). As many data treatment programs already
support Python, consistent choice of this language favors interoperability so that data acquisition, data reduction,
analysis and visualization can be entirely controlled through Python.

For these reasons, it is a good choice to equip data treatment software with an interface that can be called from
a Python script, interpreter, or notebook. To this end, we package our software (potentially written in another,
lower-level language like C, C++ or Fortran) as a module, which can be imported by Python. The functionality
of our software is exposed through class and function calls that form an application programming interface (API).
Technically, our users take the role of application programmers. To get them started, it is advisable to provide
tutorials with lots of example scripts.

4.1.5. Configuration files

Support simple configuration files for user or site specific parameterization that changes rarely.

Parameterizing software through configuration files is cheap for developers and convenient for users, provided
it is restricted to parameters that change only rarely. Good application cases are the customization of a software to
local needs or personal taste.

An initial configuration should be provided by the software. It should be a text file in a simple format like INI
or TOML, where each parameter is specified by a key/value pair. It is important that the format allows for ample
comments for each parameter. Examples for configuration files with rich comments include the Doxyfile that steers
the documentation extractor Doxygen [64], and many of the files in the /etc directory of a Unix system.

4.2. Data formats and metadata

Liaise with upstream stakeholders to foster standard data formats and full metadata capture.
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Interoperable data formats are a long-standing concern in our community. Considerable effort has gone into the
NeXus standard [162], used for raw data storage at many neutron, x-ray, and muon instruments. While NeXus
is built on top of the binary HDFS5 file format [123], some subcommunities prefer human-readable text formats.
Reflectometry experts, for example, have recently agreed on a hybrid format for reduced data [203] that combines
metadata in YAML [326] with a traditional plain table of g, I, A[ lines.

As developers of downstream data treatment software, we can adapt our loader functions to whatever raw data
format is being used. Our concern is not so much the file format, but the completeness, unambiguousness, and
correctness of metadata. If a data treatment step needs metadata that are not contained in the input data, then we
must prompt the user to manually supply the missing information. This is tedious and error-prone. Therefore we
should liaise with the developers of upstream instrument control and data acquisition software to ensure that all
necessary metadata are provided.

Occasionally, automatically acquired metadata are incomplete or incorrect, perhaps because some state parame-
ters were not electronically captured, or were captured incorrectly. Should data treatment programs provide means
to correct such errors? We rather recommend that metadata correction and enrichment be implemented as a sep-
arate step that precedes data reduction and analysis. Our rationale is that data correction is a one-time action,
whereas data reduction and analysis software may be run repeatedly as users are working towards reliable fits and
informative plots; it would be inconvenient for them to enter the same raw data corrections again and again when
rerunning reduction and analysis. Furthermore, if experimental data are to be published under FAIR principles
(Section 1.5), then both the automatically acquired and the corrected or enriched metadata need to be findable.

File formats should have a version tag so that downstream software recognizes when the input data structure
has changed. We may need version-dependent switches to support all input of any age. Modern self-documenting
formats make it possible to add new data or metadata fields without breaking loaders. However, once these new
entries are expected by our software, we need a fallback mechanism for older files.

4.3. Log files vs provenance and warnings

Write provenance information to output artifacts. Consider using log files to store information that does not
belong to regular output artifacts. Generate warnings if physics or numerics are questionable.

Decades ago, it was quite standard for batch processing software to deliver not only numeric results but also a file
that logged the actions of the software and associated output during data treatment. With modern GUI or scripting
interfaces, writing these log files has somewhat fallen into disuse, and their original purpose is now frequently
better served by other mechanisms.

As discussed in connection with Fig. 2, data treatment is conditioned by software, data, and parameters. These
inputs make up the provenance [211] of the output data. To document provenance efficiently, parameters ought
to be stored verbatim, whereas software and data should be pointed to by persistent identifiers. Instead of writing
provenance information to a log file, it is far better to store it as metadata in each output artifact. Downstream
software reads these metadata along with data input, adds further provenance information, and stores the enriched
metadata with its output. Thereby FAIR archival is possible after each data processing step.

Alternatively or additionally, provenance information can also be preserved in form of a script that allows the
entire data treatment to be replayed. Such a mechanism has been successfully implemented in Mantid, in BornA-
gain, and in the tomography reconstruction softwares MuhRec [154] and Savu [310]. Maintaining a step-by-step
history of user actions can also help to implement undo/redo functionality, which is an important requirement for
a user-friendly GUI.

Data treatment usually involves physical assumptions and mathematical approximations that are justified for
certain ranges of control parameters and certain types of experimental data. Hopefully, code functionality will
have been validated for a representative suite of input data, but it should be recognised that it may fail when
applied to data that were not anticipated by the developers. This is a particularly serious problem in a research
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context where versatile instruments are used to investigate new physical systems outside of the domain envisaged
by the designer. As long as a data treatment software executes seamlessly its output will be believed by most users.
Software authors therefore bear a heavy responsibility. We need to make our software robust in the hands of basic
or intermediate users [168]. We need to detect invalid or questionable computations and warn users of the problem.
Warnings written to a log file or a verbose monitor window are easily overlooked. We recommend clear and strong
signalling, for instance by green-yellow-red flags, to mark output in a GUI as safe, questionable, or invalid.

Finally, the log files meantioned earlier can be the dump for background information that does not belong to the
regular output artifacts. A good example is the log file written by the text processor TeX. Normally, it is safe to
ignore such logs; however, users can consult them if some problem needs closer investigation.

4.4. Plots

If a software includes data visualization, then support export to vector graphics and to data tables.

Whenever a software includes some means of data visualization, there will be user demand to preserve plots
for internal documentation or for publication. If this is not properly supported by software, users will fall back on
desperate means such as taking a screen copy, which is likely to be a crudely rasterized image that will deteriorate
in subsequent image processing. We therefore recommend that all software provide an export mechanism for every
displayed plot. The export options should include a standard vector graphics format to enable later rescaling or
editing. Also consider providing an option to export displayed data as number to a simple tabular text file so that
users can replot the data using a program of their own choice. Another export option could be a Python script that
draws a figure by sending commands to a plot API such as MatPlotLib [140], Bokeh [151], or Plotly [280]; users
can then edit the script to adapt the figure to their needs.

Certain software products boast of their ability to export “publication-grade graphics.” Given the high variability
of graphics quality in actual publications, this is a rather empty promise. Users who strive for above-average quality
[300] may request (among other things) the following capabilities: free selection of plot symbols and colors [163];
free selection of aspect ratios [2]; sublinear scaling of supporting typefaces with image size; labels with Greek
and mathematical symbols, subscripts and superscripts; free placement of a legend and other annotations in a
plot; various ways to combine several plots into one figure. Clearly, it would be wasteful to implement all this
functionality for each specialized piece of data reduction and analysis software. Instead, it is better to link our
specialized software with a generic plotting library (possibly one of the aforementioned [140,151,280]) that is
flexible enough to meet all the above demands and more.

5. Non-functional requirements

5.1. License

Put all source code under a widely used, OSI approved, open-source license.

Choosing a license should be among the very first steps in a software project. Changing the license after the first
code preview has gone public would seed confusion if not conflict. Changing the license after the first external
contribution has been merged into the code can prove outright impossible. An example of extreme precaution is
given by the Python Software Foundation [238], where new contributors need to sign a license agreement and to
prove their identity before their patches are considered. While this would seem exaggerated in our field, it gives
nonetheless a correct idea how essential it is for the juridical safety of a software that all contributions be made
under the same, clearly communicated licensing terms [171].
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We take for granted that all institutionally supported projects in our field will be published as free and open
source software (FOSS), as the advantages for the facilities, the users, the scientific community, and the develop-
ers, are overwhelming [16,93,141,150,198,206,232]. Licenses must not include popular “academic” clauses like
“non profit use” or “for inspection only”, which nullify “the many significant benefits of community contribution,
collaboration, and increased adoption that come with open source licensing” [198]. Choose the license among those
approved by the Open Source Initiative (OSI) [204]. Only OSI-approved licenses will give free access to certain
services [307]. Moreover, to minimize interpretive risks [248, Ch. 19.4] and to facilitate future reuse of software
components by other projects, avoid the more exotic ones of the many OSI approved licenses. Preferably choose
a license that is already widely used in our field. We have no common position on the long-standing debate as to
whether or not the GNU General Public License [109] with its “viral” [90,283] precautions against non-free re-use
is a good choice. Working group 4 of LENS [167] and UK Research and Innovation [302] are recommending the
BSD 3-clause licence [205]. For textual documentation (as opposed to executable computer code), the Creative
Commons licenses [54,283] are widely used.

The software license should be clearly communicated in the documentation and in a file called “COPYING” or
“LICENSE” in the top-level source directory. Additionally, some software projects insist that each source file have
a standardized header with metadata such as copyright, license and homepage.

5.2. Technology choices

5.2.1. Cross-platform development vs software as a service

Develop from the onset for the different operating systems prefered by the end users, or consider deployment
to the cloud.

Before starting code development, decide which operating system(s) shall be supported, since this has influence
upon the choice of programming languages, tools and libraries. The decision depends on the expected workflow.
For some instruments, data reduction is always carried out in the facility, during or immediately after the experi-
ment. In this case, it suffices to support just a single platform preferred by the facility. Otherwise, and especially
for later data analysis, users will run the software either on their own equipment or remotely on a server of the
experimental facility. To support installation on user computers, we usually need to develop cross-platform, and
provide installers or packages for Windows, MacOS and Linux alike (Sections 5.10.3, 5.10.4).

However, the global trend in research, as in other fields, goes towards cloud computing. In the “software as a
service” (SaaS) model, a user runs a “thin client”, most often just a web browser, to access an application that is
executed in the host facility or a third-party server farm. Where raw data sets become too large to be taken home by
the instrument users, SaaS is the only viable alternative to on-site data reduction. Once set up, SaaS will facilitate
the data treatment in several ways, with users no longer needing to install the software locally or to download their
raw data. In this configuration, software versions are controlled and updated centrally, and we no longer need to
assist users in debugging unresolved dependencies and incompatible system libraries. Computations can be made
faster by using powerful shared servers with a fast connection to the data source.

Until a few years ago, the user experience with SaaS for data analysis suffered from random delays in interactive
visualization. Thanks to faster internet connections and to optimised client-side JavaScript libraries [136,177], this
difficulty is essentially solved. A remaining difficulty is the administrative overhead for server operation and load
balancing, for authentication and authorisation, and for managing access rights to input and output data. These
topics are, for example, being addressed by the European Open Science Cloud [72] and by the joint photon and
neutron projects ExXPaNDS [74] and PaNOSC [210].

5.2.2. Programming languages

Choose a programming language that has wide support in the community.
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After deciding about the target platforms, and before starting to code, one needs to choose the programming
language(s) to be used for the new software. In making this decision, intrinsic qualities of a language such as
expressive power or ease of use play a relatively minor role. More important is the interoperability with extant
products, social compatibility with the developer and user communities and the ease of recruiting.

Frequently used implementation languages in our field are C, C++, Fortran, Matlab, IDL and Python. Computing
groups may need to support all of these, and are reluctant to add any new language to this portfolio. For new
projects, the choice is even narrower as most of us would exclude Matlab and IDL for not being open source.
The preferred scripting language in our community is Python. Hence, choosing Python as scripting language will
facilitate collaboration and interoperablity as already discussed in Section 4.1.4 with regard to a user APL.

When it comes to the choice between C, C++, and Fortran as languages for speed-critical core computations,
our preference goes to C++ mostly because as an object oriented general-purpose language it also is an excellent
platform for managing complex data hierarchies and for writing a GUI. For small libraries of general interest, plain
C is still worth considering.’

To balance the conservatism of this guideline, we need to stay open to emerging alternative languages. Promising
candidates include Rust, to deliver us from the technical debt and memory ownership issues of C++ [219], and
Julia, which addresses various shortcomings of Python [66,218,329].

5.2.3. Keeping up with language evolution

Keep up as programming languages evolve.

Programming languages evolve in time. Compatiblity-breaking disruptions like the transition from Python2 to
Python3 are very rare. More typical are revisions that fix unclear points in the language standard, introduce new
constructs and provide new functionality in the standard library.

Developers need to keep up with this evolution. Projects that are under active development should encourage the
use of new features once a language revision is supported on all target platforms. In the short term, it may seem
wiser to freeze mature code at a certain language version; however, in the longer term, this may impair productivity
and will be unattractive for developers. Inevitably then, any long-standing code base will be stylistically heteroge-
neous. Modularisation and encapsulation can help to keep different strata apart, and as long as a class or a library
provides stable functionality through a well documented interface there is no need to modernize the internals.

5.3. Coding style

Here and in the next two sections we collect guidelines that apply to both C++ and Python, and possibly to other
languages. Language specific guidelines follow in Sections 5.6 and 5.7.

5.3.1. Code formatting

Use automatic tools to ensure uniform code formatting.

Code formatting refers to layout decisions that affect the visual appearance of source files, but not the outcome
of compilation. In most programming languages, the main degree of freedom is the insertion of white space (blank
character and newline) between lexical tokens. White space governs indentation, line lengths, vertical alignment,
and the placement of parentheses and braces. A coding style is a set of layout rules for a specific programming
language. In C and C++, different combinations of rules for various syntax elements yield a huge number of
possible coding styles, some of which have been popularised by books, corporate style guides and important open

3A long-standing problem with C under Windows, the non-compliance with standards C99 or later, and in particular the missing support for
complex numbers, has been fixed in Visual Studio 2019 [193]. The advantage of C is that it can easily be called from, or wrapped by, almost
any other programming language. This argument, however, is weakening as automatic wrapper generators for C++ keep improving.
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source projects. In Python, early adoption of the authoritative style guide PEPS [306] eliminated some variability
of layout, but left many finer points open.

Within a project, a binding coding style should be adopted in order to minimize distraction in reading and
writing, and to prevent friction between developers. It should be chosen early, and modified only for very good
reasons, in order to keep the git history clean. The formatting can and should [260,305] be done automatically by
tools like clang-format [38] for C and C++, or yapf [327] for Python, with project-wide parameterization in the
top-level files .clang-format and .style.yapf, respectively. To ensure that code changes respect the chosen style, the
formatting tools should be run as part of the test suite or from a pre-commit hook [35, Ch. 8.3].

5.3.2. English style

Use plain American English.

For ease of international collaboration, all our writing should be in English. This concerns user-facing artifacts
(such as graphical interface, scripting commands, log files and error messages, manual and website) as well as
the code base (such as filenames, identifier names and comments) and internal documentation. As our users and
developers need reading proficiency in technical English anyway, we would rather not spend scarce resources on
translations into other languages. For consistency with external resources (such as operating system, libraries and
literature) the spelling should be American [314]. Avoid slang and puns. Allusions to popular and high culture
alike are not understood by everybody [286, NL.4].

5.3.3. File and identifier names

Invest effort in finding expressive identifier and file names. Avoid abbreviations. Make consistent use of
capital letters and underscores.

Expressive file and identifier names are of prime importance for the readability of large code bases. Use a
dictionary and thesaurus to find accurate English designations. Employ grammatical categories consistently, as
suggested in this recommendation: “Variables and classes should be nouns or noun phrases; Class names are like
collective nouns; Variable names are like proper nouns; Procedure names should be verbs or verb phrases; Methods
used to return a value should be nouns or noun phrases” [117].

It happens that a name was initially correct, but intention, scope or function of the designated object have drifted.
Code review and refactoring rounds are occasions to get names right. Discussing naming rules and problematic
cases can be a rewarding team exercise.

Camel case or connecting underscores can help to keep composite names readable. It is good practice to use
typography for distinguishing categories of identifiers. For C++ and Python alike, we recommend the wide-spread
convention that class names are in camel case (SpecularScan), and variables, including function arguments, in
snake case (scan_duration) [115,301,306]. For function names, there is no consensus; projects have to choose
between snake case and dromedar case (executeScan). Use these typographic devices with moderation. Don’t split
words that may be written together in regular text: Prefer wavenumber and Formfactor over wave_number and
FormFactor. Keep things simple: Rawfile is better than RawDataFile, Sofa better than MultiButtSupporter [48].
While Hungarian Notation (type designation by prefixes) is now generally discouraged [286, NL.5], [183,194,297],
a few prefixes (or postfixes) may be helpful (e.g. m_ for C++ class member variables [301]).

Directory and namespace hierarchies can help to avoid overlong names. Short names are in order for variables
with local scope [286, NL.7], [297]: In a loop, i and j are better than horizontal_pixel_index and vertical_pixel_in-
dex. Consider names in context; if names are too similar then they will be confused in cursory reading [286, NL.19],
[71,152].

General advice goes against abbreviations [115]: createRawHistogramFile is better than crtRwHstgrFil. How-
ever, some domain-specific abbreviations for recurrent complex terms are fine: Prefer SLD and EISF over numerous
repetitions of ScatteringLengthDensity or ElasticIncoherentStructureFactor.
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Fig. 3. Include dependencies between some library components (red frames, blue box) and subdirectories (within the blue box) of BornAgain.
Such images, automatically generated by Doxygen [64] and therefore always up to date, provide documentation of a software’s architecture.
They are most useful if care is taken to organize directory dependencies as a directed graphs.

5.3.4. Source comments and developer documentation

Keep source comments concise. Explain intent rather than how things are done. Where possible, generate
documentation out of the code.

Documentation is difficult, and hardly ever completely satisfactory. This holds true even more so for the devel-
oper oriented than for the user oriented material. In the short term, developers neglect documentation because it
does not help them in coding. In the long run, developer documentation is notoriously unreliable because there are
no automatic tests to enforce that it stays in tune with the executable code. This well known fundamental problem
[274] has no single comprehensive solution. We can however recommend the following strategies.

To keep documentation and code synchronized, generate documentation out of the code [190, p. 54]. To docu-
ment an API, be it user or developer facing, use a standard tool like Doxygen for C++ [64] and Sphinx for Python
[26].

Strive for the classic documentation style of Unix manual pages: telegraphic but complete. Equally avoid in-
comprehensibility and condescension. Assume an active reader who is able to deduce obvious consequences [248,
Ch. 18.2]. Most importantly, don’t say in comments what can be said in code [286, NL.1], [115,128].

General advice is that comments should explain the intent of code segments rather than their internal work-
ings [286, NL.2]. If the code is structured into files, classes and functions that have one clear purpose (single
responsibility principle, Section 5.4.3), and have consistent, accurate and expressive names (Section 5.3.3), then
no comment may be needed. The section on comments in the Google C++ style guide [115] gives valuable hints
as for which information should be provided in function and class comments.

Developers who are new to a project should seize this opportunity to improve the documentation while familiar-
izing themselves with extant code [184].

For projects of a certain complexity, a software architecture document is helpful or even indispensable. It “is
a map of the software. We use it to see, at a glance, how the software is structured. It helps you understand
the software’s modules and components without digging into the code. It’s a tool to communicate with others —
developers and non-developers — about the software” [309]. It needs to stay high-level. “It will quickly lose value if
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it’s too detailed (comprehensive). It won’t be up to date, it won’t be trusted, and it won’t be used” [309]. Any more
detailed view of the software architecture should be automatically generated, for instance in form of the various
diagrams produced by Doxygen, like the one shown in Fig. 3.

5.4. Architecture

5.4.1. Modularization

Organize the code as a hierarchy of modules with clear scope. Keep GUI and physics code separated. Avoid
cyclic dependencies.

“Decomposition driven by abstraction is the key to managing complexity. A decomposed, modular computer
program is easier to write, debug, maintain and manage. A program consisting of modules that exhibit high internal
cohesion and low coupling between each other is considered superior to a monolithic one” [294]. If a component
has limited scope and complexity, chances increase that users are able to extend its functionality [206].

Large projects should organize their code into several object libraries (or Python modules). A good library struc-
ture may reduce the time spent on recompiling and linking, and thereby accelerate development cycles. Functions
and classes that handle file, database or network access should be isolated from application specific code by, for
instance, putting them into a separate library [170].

As already mentioned in Section 4.1.1, GUI code has its own difficulties. Choose an established design pattern
like Model-View-Presenter (MVP) [230] (used by Mantid [180]) or one of its variations (MVC, MVVM [56,271]).
These patterns describe a layered architecture where the screen “view” forms a thin top layer with minimal logic.
The “model” component must not be confused with the data model of the underlaying physics code. GUI and
“business logic” (physics) should be strictly separated. The “model” component of the GUI design patterns is only
meant as a thin layer that exposes the data structures and functions from the GUI-independent physics module to
the “view”.

There should be no cyclic dependencies [170]; this holds equally for linking libraries [185, Ch. 14], for including
C/C++ headers from different source directories,* and for Python module imports [251].

Sometimes, part of our code solves a specific scientific problem and therefore may also be of interest for reuse in
a concurrent project or in other application domains. In this case, we recommend configuring the code as a separate
library (or Python module), moving it to a separate repository and publishing it as a separate project. For code that
includes time-consuming tests this has the additional advantage that it saves testing time in dependent projects.

5.4.2. External components

Wherever possible, use standard software components.

Wherever possible, we reuse existing code. Preferentially, we choose solutions from well established, widely
used components that can be treated as trusted modules [311, Section 8.4] for which we need not write our own
unit tests. For compiled languages, external components are typically used in form of libraries that must be linked
with our own application; the equivalent in Python are modules that are included through the import statement.
In either case a dependency is created that adds to the burden of maintenance (Section 5.10.1) and deployment
(Section 5.10.3).

For “dependency hygiene”, it “can be better to copy a little code than to pull in a big library for one function”
[223]. Header-only C++ libraries may seem good compromise in that they create a dependency only for mainte-
nance, not for deployment, but they come at an expense in compile time.

Standard C or C++ libraries for numeric computations include BLAS [315] and Eigen [70] for linear algebra,
FFTW for Fourier transform [86,87], and GSL (GNU Scientific Library) [82,110] for quadrature, root finding,

4Directory include graphs can be generated with the documentation tool Doxygen [64].
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fitting and more. In Python, we consequentially use NumPy [121,199] for array data structures and related fast
numerical routines. The library SciPy [262], built on top of NumPy, provides algorithms “for optimization, inte-
gration, interpolation, eigenvalue problems, algebraic equations, differential equations and many other classes of
problems” [308].

As for a GUI library, the de facto standard in our community is Qt [243], which started as a widget toolkit and
has become a huge framework. It is written in C++, but wrappers are available for a number of other languages,
among them Python [244], Go [291] and Rust [252]. Qt, as well as all libraries mentioned in the previous library,
is open source. It can be freely used in free and open source projects. As commercial licenses are also available, a
broad industrial user base, especially from the automotive sector, will sustain Qt for many years to come.

5.4.3. Design principles

Learn about object-oriented design principles.

The object-oriented programming paradigm suggests ways of organizing data and algorithms in hierarchies of
classes. As object-oriented languages came into wider use, it was learned that additional design principles are
needed to achieve encapsulation, cohesion and loose coupling, and thereby arrive at a clear and maintainable
code architecture [57,182,185,190,293]. In the C++ community, some principles became known by the mnemonic
SOLID [185]:

single responsibility: a class should have one and only one reason to change;

open/close: classes should be open for extension, closed for change;

Liskov substitution: class method contracts must also be fulfilled in derived classes;

interface segregation: classes should be coupled through thin interfaces;

dependency inversion: high-level modules and low-level implementation should both depend on abstract in-
terfaces.

Other often quoted rules include:

o law of Demeter [169,183]: Class methods should only call methods that are closely associated with their own
class or with their parameters;

e prefer composition over inheritance [187, Section 6.3]; the latter should only be used for “is-a” [25] relation-
ships.

However simple and plausible these short summaries may seem, a true understanding requires considerable ex-
perience. How these principles should be applied in refactoring can be a good topic for code review and group
discussions.

5.4.4. Design patterns

Know design patterns and use them with judgement.

Patterns “are simple and elegant formulations on how to solve recurring problems in different contexts” [296].
A catalog of 23 design patterns for object-oriented programming has been established in the widely known “gang-
of-four book™ [91]. They go by names like adapter, command, decorator, factory, observer, singleton, strategy and
visitor pattern. Developers should know these patterns sufficiently well to recognize when they can be used. When
a pattern is used this should be made transparent in the code by, for instance, choosing class names that contain the
pattern name.

Design patterns are not always the optimal choice because they are meant to lay ground for later generalization.
We have seen code bloated by premature generalization for hypothetical use cases that never came into being. De-
sign patterns, therefore, should not be used just because they can be used; they should be preferred over equivalent,
self-invented, solutions, but not over obviously simpler designs [11,12,30,126,295].
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5.4.5. Error handling

Choose consistent ways of error handling, usually using exceptions.

A policy for handling errors and non-numbers (Section 5.5.1) should be laid out early in the development or
renovation of a software module, as it can be hard to revise this later in the project [286, E.1].> When integrating
modules that have different policies, it may be necessary to wrap each cross-module function call to catch errors
or non-numbers. This applies in particular to calls to the C standard library and to other mathematical libraries of
C or Fortran legacy.

There are different ways to signal that a function cannot perform its assigned task:

return a non-number,

set a global error variable (errno in C [174], ifail in Fortran [226]),
return status information or an error code,

invoke an error handler [31],

raise an exception.

Among these, exceptions are the natural choice [286, E.2] if supported by the programming language, as is the
case for C++ and Python. By default, exceptions are passed silently from caller to caller. Occasionally, it may be
in order for a caller to catch and re-throw an exception to enrich the error message.

The ultimate reaction to an exception depends on the control mode (Section 4.1). Batch processing programs
should terminate upon error. In interactive sessions, immediate termination should be avoided if it is possible to
return to the main menu without risk of data corruption. This gives users the opportunity to continue their work or
at least to save some intermediate results before quitting the program.

To avoid data corruption when a computation terminates abnormally, subroutines should transform data out-of-
place rather than in-place. We note, however, that in-place transformation can be simpler and faster when very
large data blocks (e.g. image volumes of tens of GBytes) are handled.

5.4.6. Assertions

Use assertions to detect programming errors early in runtime.

In our code we use assertions to check invariants and other implicit conditions that need to be true for a program
to work. A failed assertion always reveals a bug. Function arguments can be checked by assertions if the caller is
responsible for preventing invalid arguments. Invalid user input must be handled by other mechanisms. Assertions
help to detect bugs early on, and to prevent software from delivering incorrect results. Furthermore, assertions are
valuable as self-testing documentation [84,320]: Assert(x>0) is much better than a comment that says x is expected
and required to be a nonzero positive number. Assertions are particularly useful for checking whether input and
output values satisfy the implicit contract between a function and its callers [67]. In languages that lack strong
typing, assertions can be used to check and document constraints on the supported type of function arguments; in
Python, however, the standard approach for this is to use native type hints combined with one of the many tools for
static or dynamic checking [50,94].

There is a tradition of disabling assertions unless compiling for debug [173]. This makes sense if crashed runs
can easily be replayed in debug mode. That condition, however, is not fulfilled if users are running our software
on computers and with inputs of their own. To analyse bug reports, instead of exactly replaying a user’s interactive
session, we often depend on analysing error messages. If this message comes from an assertion, then it is closer
to the bug, and therefore more informative, than any downstream consequence of the violated contract could

5The Google C++ Style Guide [115] forbids the use of exceptions but goes on explaining that this is mostly for compatibility with extant
code: “Things would probably be different if we had to do it all over again from scratch”.
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be. Therefore we recommend keeping all assertions active in production code, except perhaps in time-critical
innermost loops.

In the spirit of Fig. 2, bugs are not fundamentally different from errors in input data or user commands. Therefore,
exceptions raised by failed assertions should be handled in the same way as any other exception, except for an
error message that invites the user to submit a bug report. This can imply that we have to override the native assert
command or function of a programming language or standard library.

5.5. Computation

Having looked at the textual aspects of the code in Section 5.3 and at architecture in Section 5.4, we now propose
a few more guidelines that specifically address computations.

5.5.1. Non-numbers

Choose consistent ways of handling non-numbers.

The non-numbers NaN and Inf are part of the IEEE floating-point arithmetic that is implemented in all our
target hardware [80,114]. Non-numbers can arise from input parsing, from overflow, from division by zero, and
from domain errors in functions like sqrt or log. Project policy ought to regulate whether non-numbers are to be
caught early, or whether they are allowed to propagate through further data treatment. If non-numbers are allowed
to appear in output files this must clearly be communicated to users. Tests should cover all possible combinations
of numbers and non-numbers in input and output.

5.5.2. Physical units

Choose fixed units for the internal representation of dimensioned quantities. Clearly communicate units in
programming interfaces and in input or output operations.

Missing or incorrect conversion of physical units is a recurrent source of errors in technical software.® We are
fortunate enough to have no imperial units in our field, but we do have radians and degrees for angles, angstrom and
nm for neutron wavelengths and atomistic lengths, neV, meV, GHz, THz and s~! for energy transfers, mm, cm, m
and dimensionless detector pixel indices for instrument coordinates. Therefore, in software use and development,
we need to be aware of units.

Software extensions have been devised to make dimensioned quantities typesafe [83,146,234,256,303]. They
provide a safeguard against unit errors within a code, but not in input and output. In our field, a C++ Units library
[303] is used for all variables in the new array framework scipp [261]. In other projects, we rely on convention for
the consistent use of units within one software module (library or application). For instance, BornAgain core has
angles in rad, atomistic lengths in nm, macroscopic lengths in mm, while the GUI has angles in degrees, and also
supports lengths in angstrom.

To prevent conversion errors in input or output, consider the following measures:

e To guard wall clock time against misunderstandings of time zones and discontinuities from changes between
summer and winter time, internally use UTC. Use the standard software modules std::chrono in C++ and
datetime in Python.

e In the API documentation, indicate the dimension for all function arguments and return values. Alternatively
or additionally, consider including the unit in the name of the function or the function argument, like wave-
length_nm or twotheta_rad.

SMost famous perhaps is the loss of the Mars Climate Orbiter, which had for root cause a miscommunication between two computer
programs: A navigation software wrote impulse data in pound-force seconds to a file, which was then used by a trajectory control software that
assumed, in accord with written specification, that impulses were in Newton seconds [282].
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e In a GUI, and in data plots, along with any dimensioned label show its unit.

e Users of the BornAgain Python API are advised to write set_wavelength(0.62*nm) for the sake of self-
documentation, even if the constant nm is just 1.

o For data exchange, prefer self-documenting formats that have obligatory fields for physical units.

5.5.3. Profiling and performance optimization

Avoid premature optimization. Measure performance. Weigh performance gains against code complexity.

When processing huge data sets, fitting complex models, or interactively visualizing multidimensional arrays,
execution speed becomes a major concern. Perceptible latency impairs the user experience. Execution times of
hours or days make even batch processing difficult. For these reasons we may wish to optimize our code for
execution speed.

A task is said to be “embarrassingly parallel” if it lends itself to parallelization with little extra effort. If this is
the case, then we may want to plan from the onset for parallel processing.

In general, however, “premature optimization is the root of all evil” [131,160]: It makes the code more compli-
cated and less readable, and often for no perceptible gain in speed. Even if developers have perfect overview of
a software’s architecture, they will often guess wrong where the bottlenecks are. Empirical profiling is needed to
find out where most execution time is spent. Possible causes of performance bottlenecks [55,135] include algo-
rithmic complexity, memory (RAM) shortage (resulting in swapping), inefficient caching, input/output congestion
and threading deadlocks.

Profiling has its own pitfalls [68,89]: Some profilers add heavy instrumentation to the code, making the exe-
cutable so slow that it cannot be run with realistic input. If CPU time instead of wall time statistics is collected,
bottlenecks in input or output operations may be overlooked. If only the program counter is analyzed, one will see
how much time is spent in low-level system routines, but not from where they are called. The best generic profiling
technique is sampling the call stack at fixed or random time intervals. Under C++, this can be done with “very little
runtime overhead” [159] with the CPU profiler of gperftools [119]. Under Python, recommended [328] sampling
profilers include Pyinstrument and Py-spy; Palanteer even works for Python wrapped C++ code.

The accuracy of such measurements is limited by the usual /N sampling error. More importantly, results may
vary with input data and parameterization. It is therefore essential to develop and maintain a representative bench-
mark suite for use in profiling, in regression tests (Section 5.8.7) and in assessing the success of optimization steps.
Also investigate how performance scales with data size. If code has become more complicated, but not appreciably
faster for relevant kinds of input, then better revert the attempted optmization.

Optimizing strategies include:

o If the bottleneck is algorithmic complexity, can we replace an algorithm of our own by an optimized solution
from an established library? Think of the linear algebra routines from BLAS, which are thoroughly optimized
for efficient caching. Or, conversely, should we replace a generic algorithm by a more specific solution of our
own?

o When working with Python make sure that all inner loops are executed within NumPy, or be prepared to write
time-critical parts as C or C++ modules [200,213].

e Execute computations in parallel, using the full power of modern multi-core processors (vectorization and
parallelization) [34,161], and possibly also of GPUs (graphics cards) [27,207].

e Avoid repetition of time-consuming computations or input/output operations by using lookup tables, caches,
or memoization [138,192].

See Section 5.6.2 for admonition against pointless manual microoptimization in compiled languages.

5.5.4. Numeric approximations

Choose consistent numerical accuracy requirements and cutoffs.
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While our raw data are detector counts, hence integers, after normalization they become floating-point numbers.
Most scattering data have less than 8 significant digits and therefore fit into IEEE single precision. Nonetheless, in
our software we usually process them with double precision to prevent cancellation errors. Only if memory is the
bottleneck and cancellation is not of concern it may be worth going back to single precision.

Some numeric computations can be accelerated by relaxing accuracy requirements. Many iterative approxima-
tions take a parameter that specifies the required accuracy. Functions can be cut off at arguments where return
values become negligible. Choose these parameters such that the impact on any output is by one or two orders of
magnitude smaller than the uncertainty due to input error bars.

All procedures involving numeric approximations should be covered by characterization tests (Section 5.8.5).
These tests need to admit a certain tolerance of output values, which must be consistent with the intended numeric
accuracy.

5.6. C++ guidelines

5.6.1. Compiler warnings and static code analysis

Do not tolerate compiler warnings. Use static code analysis.

Compiler warnings hint at language constructs that are not forbidden by the standard but for some reason are
considered problematic. Warnings can indicate violations of fundamental design principles (code smell), possible
runtime errors (undefined behavior, overflow, invalid downcasts), use of deprecated language or library features,
name shadowing or name conflicts, issues with code style and readability, unused variables, unused code, and other
problems [265].

Our advice is to adopt zero tolerance for warnings [28] because compiler output cluttered with warnings is
distracting, makes a bad impression, and entails the risk that important information is overlooked. This policy can
be enforced with a compiler option (-Werror for gcc and clang) that treats warnings as errors.

Start by enabling all warnings (-Wall or even -Wpedantic), then deselect those that are ignorable by project
policy. Warnings from external dependencies should not be deselected globally but be silenced by applying a
#pragma to the include. Once this is settled, it is straightforward to keep the build clean of warnings [28]. New
warnings may appear when the compiler is upgraded.

The diagnostic capabilities of compilers are restricted to warnings that can be detected in passing, without
impairing the speed of compilation. Deeper checks can be done with dedicated tools, called static code analyzers
or linters. For C++, there exist the powerful open-source linters Cppcheck [53] and clang-tidy [39]. The latter
supports hundreds of different rules from various guidelines. Just as for compiler warnings, some work must be
invested to deselect rules that make no sense for us. Once this is done, zero tolerance should be enforced by nightly
CI runs.

5.6.2. Rely on compiler optimization

Recognize the amazing power of compilers and avoid pointless manual optimization.

Many developers in our field have received little or no formal training in computer science and numerical math-
ematics, and know little about compilers and processors. They tend to waste time on putative optimization steps
that are completely pointless because they are automatically done by any optimizing compiler (draw constants out
of a loop, eliminate local variables, inline functions, replace division by 2 by a bit shift). To find out what amazing
transformations modern compilers can do, read Refs. [81,112], and visit the online Compiler explorer [113] to
gain hands-on experience. Try link time optimization so that the compiler can see optimization opportunities that
involve code from external libraries [112].



J. Wuttke et al. / Guidelines for collaborative development of sustainable data treatment software 57

5.6.3. Build system

Configure C++ projects with CMake.

C++ source files would be incomplete without configuration files that steer the building, testing and packaging
of the software. These configuration files are in a domain-specific language defined by a build automation tool. We
recommend CMake [41], which is widely used and can deploy to both Windows and Unix-like platforms.

Due to a long history and almost complete backward compatibility, many deprecated commands continue to be
supported by CMake. CMake scripts in extant open-source projects often mix different styles and use outdated
constructs. Beware of taking such code as template. When starting a new project, invest some effort in learning
modern CMake [257,264,289] and write clean scripts from scratch.

CMake should be run from a dedicated build directory. This is called out-of-source build, in opposition to in-
source, which pollutes the source directory up with compilation output. Since in-source builds are more likely to
be accidental than intended, we recommend configuring CMake such that they are forbidden [24].

CMake can be used together with the compiler cache CCache [33]. CCache wraps compiler calls, caches inputs
and skips recompilation of sources that have not changed. This can substantially speed up development cycles.

5.7. Python guidelines

5.7.1. Pythonic style

Learn idiomatic Python.

Thanks to its simple syntax, Python has a reputation of being easy to learn. This simplicity, however, can be
deceptive for experienced programmers who are coming from other languages. They are at risk of only using a
subset of Python that falls into their comfort zone, per the old joke “the determined Real Programmer can write
FORTRAN programs in any language” [229]. To make full and idiomatic (“Pythonic”) use of the language, it is
necessary to learn iterators, generators, list comprehensions, positional and keyword arguments, Python’s flavor of
object orientation, metaprogramming with decorators and introspection. Good sources of information are advanced
textbooks [242] and best-practice code examples [18,249].

5.7.2. Static code analysis

Static code analysis is particularly important in Python.

Static code analysis is even more important in Python than in C++ because Python has neither strong typing nor
a compiler, so that faulty statements in many cases cannot be detected before they are reached during execution.
A detailed comparison of different Python code analyzers has been provided in a recent Bachelor’s thesis [158].
The free and open-source tools Pylint [236] and flake8 [78] are excellent so that there is little incentive to try out
commercial alternatives [5]. Similar to the C++ linter clang-tidy (Section 5.6.1), they support lots of different rules.
Some team effort should be invested in selecting a set of rules that are appropriate for a given project. After that, a
zero tolerance policy is easiest to sustain, for the same reasons as given above (Section 5.6.1).

5.8. Tests

5.8.1. Regression test suite

Accumulate tests in a regression test suite.
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All but the most trivial software should include tests. Tests should accumulate, with new tests being included
each time new functionality is added or a bug resolved. There is rarely a good reason to remove a test. Accumulated
tests have been called regression tests because they prevent the software from falling back, from losing functionality
that is covered by these tests. Since there are no tests in our code bases that do not belong into this category, we
consider the attribute “regression” redundant and rarely use it.

Comprehensive test coverage is a precondition for safe and efficient refactoring and, in turn, for maintenance
and evolution. This is how “legacy” came to be defined as software without tests [76]. For these reasons, we are
discussing tests under the heading “product requirements”, whereas the infrastructure for running the tests has
found its place among the procedural guidelines (Section 3.2.4).

In a typical source tree, tests are organised in a top-level directory called fests or similar. There should be a
simple way to run all automatized tests, or some selection thereof, like the command cfest povided by the build
system CMake [52] for C++ and pytest or unittest for Python [237].

Which parts of code are covered by tests should occasionally be investigated with a coverage tool [3]. Beware
that coverage only measures invocation, not verification, of code lines, and, as for any metric per Goodhart’s law,
this must not become a goal in itself [21, p. 222]. In fact, empirical evidence suggests that high unit-test coverage
is no tangible help in producing defect-free software [7]. However, a helpful side effect of determining coverage,
is that it can draw attention to code that is no longer used anywhere and should be removed.

Colleagues experienced in running software carpentries have argued that the “breathtaking diversity of scientific
code” makes it difficult to give any generic advice on how to write meaningful tests [319]. Nonetheless, we could
agree on the following guidelines for our more homogeneous application domain.

5.8.2. Functional tests overview

Run fast tests before merging code, slow tests overnight.

The standard taxonomy of functional tests is based on scope (or granularity [292]): unit, integration, system
tests (to keep things simple, we do not distinguish system, acceptance or end-to-end tests). However, when the
focus is shifted from writing to running tests, then a more important distinction is made by size, i.e. by execution
speed [21]. We recommend distinguishing three sizes of test:

Small tests are so fast that they can be run by each developer after every recompilation. Typically they run in
a single process and are not allowed to sleep, to perform I/O operations, or to make any other blocking call [21,
p. 216]. Altogether, they should take less than a minute. They should include enough unit tests to cover the bulk
of functionality [21, p. 220]. Additionally, there should be some representative end-to-end tests, possibly from
tutorials (Section 5.9.3), tweaked for fast execution.

Medium tests have to pass on our CI servers before a merge request (GitLab) or pull request (GitHub) is accepted
into the shared code base. Altogether, they should take not much more than 10 minutes on the dedicated CI
machines, as otherwise, in our experience, the collaborative workflow starts to suffer. To accelerate these tests,
it is often advisable to reduce array dimensions.

Large tests are needed to check the treatment of real-life data, or to verify numerical computations in multidi-
mensional parameter space. Altogether, they may take several hours, and are typically run overnight. Of course,
specific large tests should be run before acceptance of a merge/pull request if they are explicitly covering parts of
the code that have been changed.

The coding can be simplified and standardized by using a test framework. Under C++, this could be Google
Test, the more lightweight Catch2 [36,287], or QTest [245] with functionality for mouse and keyboard simulation
to support basic GUI testing. Under Python, either Pytest or PyUnit (module name unittest) [175,189] could be
used.

5.8.3. Unit tests

To write good unit tests, learn to write testable code.
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Many interesting discussions can be found in the web regarding the question what should be covered by unit
tests. For instance, should we test getters and setters? Kent Beck, the creator of “extreme programming”, has given
this answer: “It is impossible to test absolutely everything, without the tests being as complicated and error-prone
as the code... You should test things that might break. If code is so simple that it can’t possibly break, and you
measure that the code in question doesn’t actually break in practice, then you shouldn’t write a test for it” [19]. And
elsewhere: “I get paid for code that works, not for tests... If I don’t typically make a kind of mistake (like setting
the wrong variables in a constructor), I don’t test for it... I’'m extra careful when I have logic with complicated
conditionals. When coding on a team, I modify my strategy to carefully test code that we, collectively, tend to get
wrong” [279].

A more formal approach refers to the cyclomatic complexity of function, that is the number of different pos-
sible pathways due to conditional statements. Basically, there should be as many different test cases as there are
pathways [266]. However, we make an exception for a complexity of 1; if a function contains neither a branch nor
performs any other complicated operation, then we advise against unit code coverage. Such functions are better
tested indirectly, through their callers, in integration or system tests. No unit tests thus for plain getters and setters,
nor for constructors or destructors that perform no extra work.

This last clause brings us to the question how to unit test a function or class that is tightly coupled to other
classes. Part of the answer is that to write good unit tests we need to adapt our coding style, we need to “write
testable code” [129]. Specifically, constructors and destructors should do no real work, call chains should not walk
long object graphs, modifiable singletons should be avoided, classes should not be too large [130].

Not all interdependencies can be factored away though. For meaningful unit tests, we still need to allow functions
and classes under test to depend on other functions, classes, and external data. If these external dependencies are
too heavy for small (fast) tests, then we need to replace them with a test double. See Ref. [299] for a detailed
discussion of this technique, and especially of the pitfalls of overused mocking frameworks.

5.8.4. Numerics tests

Numeric computations need broad test coverage.

Numeric computations, unless performed by trusted modules (Section 5.4.2), need comprehensive unit tests. To
do better than black-box testing, we may instrument the code so that tests can determine parameter values where
the algorithm in use changes. In this way, continuity and smoothness can be checked at the points where failure is
most likely [324]. Such numeric code should then be packed as a separate library and in a separate project so that
the time consuming tests must not be rerun over and again in dependent applications.

5.8.5. Characterization tests

Use characterization tests to prevent regression of numeric results.

To validate our software end to end we compare results with other programs, consider special parameter values,
investigate how the output scales with input data and parameters, and so on. We note that this type of testing
relies on our thorough understanding of the application domain. Some of these manual checks can and should be
converted into automatized system tests that are preserved in our regression test suite. Others, like the comparison
with third-party software, are more difficult to automatize, or would make the test suite too complicated or too
slow. Instead, we suggest performing these tests manually, documenting them, and then ensuring by other tests
that future changes of our software do not corrupt what has once been validated.

In the absence of an independent oracle [284, Ch. 4.1], the best end-to-end validation is through characterization
tests [76, Chapter 13], also called golden master, output comparison, or snapshot tests [276]. To build a charac-
terization test, we characterize the present state of our software by running it for different inputs and collecting
the outputs. These outputs are added as reference data to our source repository. A characterization test runs the
current version of our software and asserts that the output still agrees with the pertinent reference output. If results
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disagree, then it is up to the developer to investigate whether the latest changes in the code have introduced a bug
or, on the contrary, have fixed a bug in the reference version. In the latter case, the reference data are replaced by
the current output.

When the output consists of text and integer numbers, one can simply check for literal agreement with the
reference data. However, when it comes to floating-point numbers exact agreement should not be expected as
numeric results may change under legitimate refactoring operations, and even the same software version may yield
different numeric results under different compilers or on different hardware [62]. Therefore, characterization tests
that check the invariance of floating-point outputs need to admit a reasonable margin for relative deviations. If a
code involves random numbers (e.g. for Monte-Carlo integration), seeds must be set to fixed values.

5.8.6. GUI tests

GUIs can and should be covered by automatic tests.

Automating GUI testing is difficult but important, and therefore a subject of intense research and development
(e.g. [15,197] and references therein). Tests need to sample the input space, which consists of external data, pa-
rameterization, and user actions like mouse movements, clicks, and keyboard inputs.

For automated testing, the application must be fed with emulated user actions. They are either generated by
automatic methods that treat the software under test as a black box, or they are constructed to represent realistic
sessions. Often, they are captured from interactive input. Of all the tools available for capture & replay testing, the
most promising for our needs are probably the free GNU Xnee [111] for the X11 environment and the commercial
Squish [88] for the Qt GUI framework. However, we do not have enough experience in their use to recommend one
or other of these tools. For the data reduction software Steca we are experimenting with a wrapper library libQCR
[325] that equips Qt widgets with functionality for scripting, capture, and replay; however, it is not yet clear how
this approach would scale to larger projects.

Even without emulating widget interactions, a substantial degree of test coverage can be achieved if the software
adheres to a design pattern like Model-View-Presenter (Section 5.4.1) where the widgets form a thin top layer with
minimal logic. As the other layers of the GUI code are unaware of the widget toolkit and its screen representation,
they can be covered by conventionally coded tests [85].

5.8.7. Performance tests

Maintain meaningful performance tests to detect regression of execution speed.

Among non-functional tests, most relevant for us are performance tests. They are closely related to the op-
timization work discussed in Section 5.5.3. Performance tests are benchmarks together with additional control
scripts that safeguard against performance regression. They may reuse code from functional tests. They may have
unit, integration or system scope. Unit and integration tests detect, for instance, inefficiencies in numerical compu-
tations, in caching, threading, I/O or network access. System tests mimic actual software usage. Performance tests
concentrate on what is key to user satisfaction, namely functionality that is time critical and frequently used.

5.9. Web presence and user documentation

The user documentation should consist of a home page, tutorials, references and a comprehensive overview
in form of a peer-reviewed publication. Tutorials and reference manuals should be available online and be ver-
sion controlled. This facilitates maintenance, helps users who are working with an old software version, and is
indispensable for the sake of reproducible science.
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5.9.1. Home page

Each project should have an informative homepage in the World Wide Web.

The landing page should give quick access to

essential metadata: authors, maintainers, license, recommended citation, maintenance status;
download location and installation instructions;

user documentation;

news;

source repository, issue tracker etc;

contact mail address, contact form, and/or discussion forum.

For GitHub and GitLab repositories, the simplest way to set up a web presence is through MarkDown files in
the source tree. For small libraries, one single “README” page may suffice. However, for user-oriented software
it is worth investing some effort in a visually attractive landing page. Further content is best converted from a
markdown language to HTML by a static site generator like Hugo [139] or Jekyll [149]. For deployment, many
cloud services offer free hosting; for instance, GitHub offers web space through GitHub Pages [99]. Local hosting
is not difficult either.

5.9.2. Peer-reviewed high-level description

Present the software in a peer-reviewed overview paper.

A peer-reviewed overview paper is the established way to present a scientific software to the academic com-
munity and to give confidence that the software can be relied upon in downstream research. For data reduction
software, a natural choice is to publish the paper in a methods oriented journal; for data analysis, a journal related
to the application domain may be more appropriate.

For the Journal of Applied Crystallography (JAC) to consider a software paper, “the utility of the program and
adequacy of the documentation should normally have been proved by the successful use of the program by at least
two independent users” [153]. This is an excellent rule, since there is little public interest in papers on software
that is not yet production ready.

For further advice, we continue to cite the notes for JAC authors: “A description of the purpose, strategy, com-
puter language, machine requirements, input requirements and type of results obtained should be included. A Com-
puter Program article should make clear the novelty of the program and its scientific context. Articles on significant
updates to existing programs will also be considered ...” To reduce the need for updates, a journal paper should
concentrate on fundamental ideas and avoid details that are better addressed by a user manual.

Complementary to this type of scientific publication, authors should also consider documenting the engineering
aspects of their software in technical outlet such as the Journal of Open Research Software [147] or the Journal of
Open Source Software [148].

5.9.3. Tutorials and references

Provide tutorials for linear reading and references for random access.

From their experience with consumer applications, users are accustomed to explore a new GUI by trial and error.
However, to master a complex, and perhaps not so well designed, scientific GUI, they may need some guidance.
Textual tutorials, lengthy and full of screenshots, are not ideal as they are cumbersome to read and to maintain.
A better alternative could be tooltips and other help facilities that are tightly integrated in the GUI; this approach is
consequentially pursued in the easydiffraction GUI [69]. Another alternative, for software that is reasonably stable,
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requires D.m requires D.n

Fig. 4. Let A, B, C, D represent four software components. The arrows stand for “depends on” or “requires” relations. There is a diamond
problem it A, through intermediary of B and C, depends on different versions of D (m or n) that are incompatible with each other. This situation
arises if some, but not all dependent components are updated after a low-level interface has changed.

may be video tutorials and other e-learning formats. The Photon and Neutron E-learning platform PaN-learning
[208] provides an e-learning module [209] on how to make videos with Open Broadcaster Software [202].

For a command-line or scripting interface, tutorial chapters should be built around actual scripts. As our software
undergoes revisions, we need to make sure that all scripts still work, and still produce the same answer as promised
by the documentation. This is best accomplished by covering all scripts with regression tests. Some tricks may be
in order to accelerate scripts when run from routine tests, for instance by reducing the number of output pixels.

Command references, just as developer documentation of low-level APIs (Section 5.3.4), should wherever pos-
sible be generated out of the code, using tools like Doxygen [64] or Sphinx [26].

5.10. Deployment

5.10.1. Dependency problems

Keep up with changing external dependencies.

Any nontrivial application depends on external libraries. A few of those may be written and maintained by our-
selves, most are not. As installed libraries may be updated by the operating system, package managers, or installers
of other software, it is quite possible that our software stops working because of broken dependencies. This is dis-
cussed under the name software rot or software collapse [133]. It poses severe problems for the deployment of
software, and for the reproducibility of work done with a specific software version.

Additional difficulties arise if dependencies between software components do not form a tree, but instead are
more complex with some components being connected through more than one path. The paradigm for this is the
diamond dependence, explained in Fig. 4. For a large system that involves many components, the diamond problem
easily explodes into what is known as dependency hell [59].

A natural reaction is to revert changes that broke the system, and to freeze dependencies at the latest consistent
state. This, however, can only be a short-term remedy, and in the longer term (for essentially the same reasons as
in Section 5.2.3) one has no choice but to keep up with the evolution of the infrastructure. We therefore tend to use
the latest versions of operating systems, compilers, tools and libraries, and upgrade our software as suggested or
required by the external dependencies [322].

5.10.2. Reproducibility vs backward compatibility

Maintain backward compatibility regarding input data and fit models.
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In the literature, reproducibility in computational science [133] is mostly considered from the standpoint of a
scientist who integrates third-party code to set up a simulation or to process data for one specific research project.
Even if the scientist’s own code and protocols are preserved and well documented it is not guaranteed that they
still work, and work correctly, some years later on newer hardware and with newer system libraries [220].

Here we are concerned with data treatment software that cannot be frozen, as data reduction programs need to be
updated when instruments are modified, sample environment equipment added or data formats changed; therefore,
data analysis software needs frequent updates to meet ever new user demands. It would require an unrealistic
amount of effort to keep all previous version of such software operable while library dependencies and operating
systems are evolving. Instead, we should strive for backward compatibility, with new versions of our software still
being able to process old raw data and to run old fit models (Section 4.2).

5.10.3. Deploying compiled applications

Use installers or package managers to deploy compiled software.

Whatever our internal policy about dependency handling, the bigger challenge is to deploy our software to end
users so that they do not have to fight dependency hell. Unless the software is uniquely run on servers of our own
(SaaS, Section 5.2.1), we need to enable users to install it on their own machines. This means we have to support
a carefully chosen range of operating systems, and their respective versions, with the software needing to coexist
with an unknown combination of libraries and other applications already installed on the computer.

Since we want to produce truly open-source software, we also need to provide instructions for building from
source. However, users will increasingly expect a binary distribution of the software to be provided for each of the
popular operating systems, removing the need for them to spend time learning how to build the software.

For very simple programs it may be adequate to distribute just one binary executable per target operating system,
with all library dependencies statically linked. This precludes all problems with finding external libraries.

For larger programs, the present state of the art requires dynamic linking, where libraries are not contained in
the application binary, but are loaded at runtime (shared libraries under Unix, dynamic link libraries (DLL) under
Windows, modules in Python). Dynamic linking reduces network, disk and memory consumption, but has also
some disadvantages [61], most importantly the need to keep the right library version available and findable on each
target system.

Under Windows and MacOS, the standard method of software deployment is to provide an installer that bundles
a binary executable with its libraries dependencies, and takes care of installation, upgrades or removal of the
software components. Installers are preferred over direct download of executables because of concerns about file
size, user convenience, compatibility with other installed software, elevated privileges and special services [277].
In CMake based projects, the installers can be created automatically through the program cpack [51]. An interesting
alternative to native Windows or MacOS installers could be the cross-platform installer Zero Install [331].

When running our installer, users may need to acknowledge a warning that they are executing software from
an untrusted source. To get rid of this warning, a facility has to purchase signing certificates from Microsoft and
Apple, and a CI step for code signing has to be added. We did so for SasView [254] and Mantid [9,178].

Instead of an installer, we may also deploy our software as a package, and thereby leave the handling of depen-
dencies to a package manager. This is the standard way of binary distribution under Linux. Unfortunately, different
Linux distributions are based on different package formats. Given our limited resources, it may suffice to provide
a Debian package since most users are running a Debian based distribution (Ubuntu, MX, Mint, ...), and there are
also ways to install Debian packages on rpm based and other distributions. Thankfully, there is a Debian Photons
And Neutrons Team [58] at Soleil Synchrotron that builds packages for a large number of scientific applications,
and feeds them into the official Debian distribution.

Package managers and repositories also exist for Windows [195,270] and Mac [269]. Some are free and open
source, and have GitHub based repositories, which facilitates the submission of packages. Homebrew [137] and
MacPorts [176] are widely known among Mac users, and are supported by active communities. For Windows,
Scoop [263] and Chocolatey [37] look promising, but we cannot base a recommendation on practical experience
of our own.
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5.104. Deploying Python applications

Use pip or higher-level methods to deploy Python applications.

As the Python maintainers acknowledge, “packaging in Python has a bit of a reputation for being a bumpy ride.
This impression is mostly a byproduct of Python’s versatility” [240]. They distinguish no less than seven different
layers of dependencies that may be included on top of the Python code that is to be deployed. From raw code to
SaaS, the different deployment methods are:

e Provide the Python code, which users will then run in their own Python environment. Include files setup.py,
setup.cfg, MANIFEST.in, pyproject.toml to configure the project and assemble a “source distribution” and
a “built distribution” (wheel) [241]. Upload the distributions to PyPI, the Python Packaging Index [239].
Packages from PyPI can be installed with the Python utility pip.

e Use PEX [221] to combine the Python code with all its module dependencies in a .pex file, which is a specially
configured zip archive. This is probably the least common method, and is not supported under Windows.

e Instead of pip, use the cross platform package and environment manager Conda [47]. Contribute the package
to the cross-language repository Anaconda [4]. In this way, other scientific code from Anaconda can be
integrated in a distribution. To resolve performance issues with Conda’s dependency resolution [1], consider
Poetry [225].

e Use Pylnstaller [235] or equivalent tools [240] to freeze the Python application into a stand-alone executable.

Pushing the integration further, the remaining deployment methods are no longer specific to Python:

e Include system libraries to build a binary image, using e.g. AppImage [8], Flatpak [79], or Snap [272] to
generate distribution-independent Linux packages.

e Use Docker [63] or Singularity [164] to put a binary image into a sandboxed container.

e Use a virtual machine to run an image or a container under whatever operating system.

e Deploy only to your own hardware, and run your software as a service (Section 5.2.1).

These different levels of packaging all have their own caveats and there is no “one size fits all” solution to be
recommended at the time of writing.

6. Conclusion

In this work we presented engineering guidelines for data treatment software, to foster sustainability and collab-
oration. The set of guidelines emerged from a questionnaire in the SINE2020 project [181] and was augmented to
cover all aspects of the software development process. In lieu of a summary, we refer back to the boxed guidelines
at the beginning of subsections. In the text that follows each guideline we give more detailed advice and explain
our choices, with ample references to the technical literature.

Perhaps the most surprising aspect of this paper is its length, which reflects the depth of our technology stack
and the breadth of engineering knowledge that is needed for sustainable software development. Our guidelines
show how much more there is to professional software engineering than just computer programming. With profes-
sionalization comes division of work: While software engineers help to get the software right, we need scientists
to continue contributing their application-domain expertise so that the right software is built.

Many engineering techniques and tools have become commonplace among software developers in general, or
in the open-source or research software communities in particular. Therefore, for most points we discuss, we
could easily reach a consensus. However, we also identified a few questions that need to be answered individu-
ally for each project or in each group: licensing (Section 5.1), error handling (Section 5.4.5), deployment (Sec-
tions 5.10.3-5.10.4).
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Inevitably, given the rapid development of the area, some of the technical advice given here will be outdated in a
few years. The participating groups now continue their cooperation in working group 4 of the League of advanced
European Neutron Sources (LENS) [167], and we will continue to monitor and assess emerging alternatives, up-
dating our recommendations as required.
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