000907744 001__ 907744
000907744 005__ 20240712084529.0
000907744 0247_ $$2doi$$a10.1103/PhysRevB.105.115135
000907744 0247_ $$2ISSN$$a1098-0121
000907744 0247_ $$2ISSN$$a2469-9977
000907744 0247_ $$2ISSN$$a0163-1829
000907744 0247_ $$2ISSN$$a0556-2805
000907744 0247_ $$2ISSN$$a1095-3795
000907744 0247_ $$2ISSN$$a1538-4489
000907744 0247_ $$2ISSN$$a1550-235X
000907744 0247_ $$2ISSN$$a2469-9950
000907744 0247_ $$2ISSN$$a2469-9969
000907744 0247_ $$2Handle$$a2128/31191
000907744 0247_ $$2WOS$$aWOS:000801209300004
000907744 037__ $$aFZJ-2022-02186
000907744 082__ $$a530
000907744 1001_ $$0P:(DE-HGF)0$$aMłyńczak, E.$$b0$$eCorresponding author
000907744 245__ $$aFe(001) angle-resolved photoemission and intrinsic anomalous Hall conductivity in Fe seen by different ab initio approaches: LDA and GGA versus GW
000907744 260__ $$aWoodbury, NY$$bInst.$$c2022
000907744 3367_ $$2DRIVER$$aarticle
000907744 3367_ $$2DataCite$$aOutput Types/Journal article
000907744 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652773836_4297
000907744 3367_ $$2BibTeX$$aARTICLE
000907744 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907744 3367_ $$00$$2EndNote$$aJournal Article
000907744 520__ $$aMany material properties such as the electronic transport characteristics depend on the details of the electronic band structure in the vicinity of the Fermi level. For an accurate ab initio description of the material properties, the electronic band structure must be known and theoretically reproduced with high fidelity. Here, we ask a question which of the ab initio methods compare the best to the experimental photoemission intensities from bcc Fe. We confront the photoemission data from Fe(001) thin film grown on Au(001) to the photoemission simulations based on different ab initio initial band structures: density functional theory (DFT) in the local density approximation (LDA) and the generalized gradient approximation (GGA) and GGA corrected with many-body perturbation theory in the GW approximation. We find the best comparison for the GW results. As a second step, we discuss how the calculated intrinsic anomalous Hall conductivity (AHC) in bcc Fe depends on the choice of the method that describes the electronic band structure and Fermi level position. We find very large differences in AHC between the three theoretical approaches and show that the AHC found for the experimental Fermi level location within the GW band structure is the closest to the literature results of transport experiments. This finding improves our understanding of not only the anomalous Hall effect itself, but also other related phenomena, such as the anomalous Nernst effect.
000907744 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000907744 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907744 7001_ $$0P:(DE-Juel1)145750$$aAguilera, I.$$b1$$ufzj
000907744 7001_ $$0P:(DE-Juel1)167375$$aGospodarič, P.$$b2
000907744 7001_ $$0P:(DE-Juel1)165229$$aHeider, Tristan$$b3
000907744 7001_ $$0P:(DE-Juel1)169309$$aJugovac, M.$$b4
000907744 7001_ $$0P:(DE-Juel1)162281$$aZamborlini, G.$$b5
000907744 7001_ $$0P:(DE-Juel1)161179$$aHanke, Jan-Philipp$$b6
000907744 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b7$$ufzj
000907744 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Y.$$b8$$ufzj
000907744 7001_ $$0P:(DE-Juel1)168293$$aTusche, C.$$b9$$ufzj
000907744 7001_ $$0P:(DE-Juel1)176278$$aSuga, Shigemasa$$b10
000907744 7001_ $$0P:(DE-Juel1)145012$$aFeyer, V.$$b11$$ufzj
000907744 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b12
000907744 7001_ $$0P:(DE-Juel1)130895$$aPlucinski, L.$$b13$$ufzj
000907744 7001_ $$0P:(DE-Juel1)130948$$aSchneider, C. M.$$b14$$ufzj
000907744 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.105.115135$$gVol. 105, no. 11, p. 115135$$n11$$p115135$$tPhysical review / B$$v105$$x1098-0121$$y2022
000907744 8564_ $$uhttps://juser.fz-juelich.de/record/907744/files/PhysRevB.105.115135.pdf$$yOpenAccess
000907744 909CO $$ooai:juser.fz-juelich.de:907744$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145750$$aForschungszentrum Jülich$$b1$$kFZJ
000907744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b7$$kFZJ
000907744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b8$$kFZJ
000907744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168293$$aForschungszentrum Jülich$$b9$$kFZJ
000907744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145012$$aForschungszentrum Jülich$$b11$$kFZJ
000907744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b12$$kFZJ
000907744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130895$$aForschungszentrum Jülich$$b13$$kFZJ
000907744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b14$$kFZJ
000907744 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000907744 9141_ $$y2022
000907744 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000907744 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000907744 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000907744 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000907744 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907744 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000907744 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000907744 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000907744 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000907744 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000907744 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000907744 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000907744 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2021$$d2022-11-11
000907744 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000907744 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000907744 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000907744 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000907744 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000907744 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x4
000907744 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x5
000907744 9801_ $$aFullTexts
000907744 980__ $$ajournal
000907744 980__ $$aVDB
000907744 980__ $$aUNRESTRICTED
000907744 980__ $$aI:(DE-Juel1)IAS-1-20090406
000907744 980__ $$aI:(DE-Juel1)PGI-1-20110106
000907744 980__ $$aI:(DE-82)080009_20140620
000907744 980__ $$aI:(DE-82)080012_20140620
000907744 980__ $$aI:(DE-Juel1)IEK-5-20101013
000907744 980__ $$aI:(DE-Juel1)PGI-6-20110106
000907744 981__ $$aI:(DE-Juel1)IMD-3-20101013