001     907749
005     20230222201808.0
024 7 _ |a 10.1107/S1600576721011936
|2 doi
024 7 _ |a 0021-8898
|2 ISSN
024 7 _ |a 1600-5767
|2 ISSN
024 7 _ |a 2128/31453
|2 Handle
024 7 _ |a altmetric:119237145
|2 altmetric
024 7 _ |a 35145354
|2 pmid
024 7 _ |a WOS:000749998900002
|2 WOS
037 _ _ |a FZJ-2022-02191
082 _ _ |a 540
100 1 _ |a Jochum, J. K.
|0 0000-0002-0066-0944
|b 0
|e Corresponding author
245 _ _ |a Optimized signal deduction procedure for the MIEZE spectroscopy technique
260 _ _ |a [S.l.]
|c 2022
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677058436_20617
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A method is reported to determine the phase and amplitude of sinusoidally modulated event rates, binned into four bins per oscillation, based on data generated at the resonant neutron spin-echo spectrometer RESEDA at FRM-II. The presented algorithm relies on a reconstruction of the unknown parameters. It omits a calculation-intensive fitting procedure and avoids contrast reduction due to averaging effects. It allows the current data acquisition bottleneck at RESEDA to be relaxed by a factor of four and thus increases the potential time resolution of the detector by the same factor. The approach is explained in detail and compared with the established fitting procedures of time series having four and 16 time bins per oscillation. In addition the empirical estimates of the errors of the three methods are presented and compared with each other. The reconstruction is shown to be unbiased, asymptotic and efficient for estimating the phase. Reconstructing the contrast increases the error bars by roughly 10% as compared with fitting 16 time-binned oscillations. Finally, the paper gives heuristic, analytical equations to estimate the error for phase and contrast as a function of their initial values and counting statistics.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 623 - Data Management and Analysis (POF4-623)
|0 G:(DE-HGF)POF4-623
|c POF4-623
|f POF IV
|x 1
588 _ _ |a Dataset connected to DataCite
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 0
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e RESEDA: Resonance spin echo spectrometer
|f NL5S
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)RESEDA-20140101
|5 EXP:(DE-MLZ)RESEDA-20140101
|6 EXP:(DE-MLZ)NL5S-20140101
|x 0
700 1 _ |a Spitz, L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Franz, C.
|0 P:(DE-Juel1)165580
|b 2
700 1 _ |a Wendl, A.
|0 0000-0001-8899-975X
|b 3
700 1 _ |a Leiner, J. C.
|0 0000-0001-6421-0072
|b 4
700 1 _ |a Pfleiderer, C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Soltwedel, O.
|0 0000-0002-0007-4865
|b 6
|e Last author
773 _ _ |a 10.1107/S1600576721011936
|g Vol. 55, no. 1, p. 14 - 20
|0 PERI:(DE-600)2020879-0
|n 1
|p 14 - 20
|t Journal of applied crystallography
|v 55
|y 2022
|x 0021-8898
856 4 _ |u https://juser.fz-juelich.de/record/907749/files/2103.06623.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/907749/files/in5058.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907749
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165580
910 1 _ |a Technische Universität München
|0 I:(DE-588b)36241-4
|k TUM
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Technische Universität München
|0 I:(DE-588b)36241-4
|k TUM
|b 6
|6 0000-0002-0007-4865
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-623
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Data Management and Analysis
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL CRYSTALLOGR : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21