000907750 001__ 907750
000907750 005__ 20240712100833.0
000907750 0247_ $$2doi$$a10.1029/2022GL098626
000907750 0247_ $$2ISSN$$a0094-8276
000907750 0247_ $$2ISSN$$a1944-8007
000907750 0247_ $$2Handle$$a2128/31217
000907750 0247_ $$2altmetric$$aaltmetric:128844103
000907750 0247_ $$2WOS$$aWOS:000800117400001
000907750 037__ $$aFZJ-2022-02192
000907750 082__ $$a550
000907750 1001_ $$0P:(DE-Juel1)129117$$aErn, M.$$b0$$eCorresponding author
000907750 245__ $$aThe Mesoscale Gravity Wave Response to the 2022 Tonga Volcanic Eruption: AIRS and MLS Satellite Observations and Source Backtracing
000907750 260__ $$aHoboken, NJ$$bWiley$$c2022
000907750 3367_ $$2DRIVER$$aarticle
000907750 3367_ $$2DataCite$$aOutput Types/Journal article
000907750 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1653378347_22421
000907750 3367_ $$2BibTeX$$aARTICLE
000907750 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907750 3367_ $$00$$2EndNote$$aJournal Article
000907750 520__ $$aOn 15 January 2022, the Hunga Tonga–Hunga Ha'apai volcano erupted violently. This exceptional event excited a manifold of atmospheric waves. Here, we focus on the mesoscale part of the wave spectrum. About 8.5 hr after the eruption a strong atmospheric gravity wave (GW) was observed in the stratosphere by the satellite instruments Atmospheric Infrared Sounder (AIRS) and Microwave Limb Sounder (MLS) in the vicinity of Tonga. By ray-tracing, we confirm the eruption as the source of this GW event. We determine the wave characteristics of the GW in terms of horizontal and vertical wavelengths and GW momentum flux. The strength of the GW is compared to the usual Southern Hemisphere flux values during this week. The event is comparable to the strongest convective events considering MLS, and exceptionally strong considering AIRS, which observes faster waves only.
000907750 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000907750 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000907750 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907750 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b1
000907750 7001_ $$0P:(DE-Juel1)180866$$aRhode, Sebastian$$b2$$ufzj
000907750 7001_ $$0P:(DE-Juel1)129143$$aPreusse, P.$$b3
000907750 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2022GL098626$$n10$$pe2022GL098626$$tGeophysical research letters$$v49$$x0094-8276$$y2022
000907750 8564_ $$uhttps://juser.fz-juelich.de/record/907750/files/Geophysical%20Research%20Letters%20-%202022%20-%20Ern%20-%20The%20Mesoscale%20Gravity%20Wave%20Response%20to%20the%202022%20Tonga%20Volcanic%20Eruption%20AIRS.pdf$$yOpenAccess
000907750 8767_ $$d2022-02-15$$eHybrid-OA$$jDEAL
000907750 909CO $$ooai:juser.fz-juelich.de:907750$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000907750 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b0$$kFZJ
000907750 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b1$$kFZJ
000907750 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180866$$aForschungszentrum Jülich$$b2$$kFZJ
000907750 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b3$$kFZJ
000907750 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000907750 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000907750 9141_ $$y2022
000907750 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000907750 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907750 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000907750 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000907750 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907750 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000907750 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000907750 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000907750 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000907750 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000907750 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000907750 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-18
000907750 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000907750 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907750 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907750 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000907750 920__ $$lyes
000907750 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000907750 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000907750 9801_ $$aFullTexts
000907750 980__ $$ajournal
000907750 980__ $$aVDB
000907750 980__ $$aUNRESTRICTED
000907750 980__ $$aI:(DE-Juel1)IEK-7-20101013
000907750 980__ $$aI:(DE-Juel1)JSC-20090406
000907750 980__ $$aAPC
000907750 981__ $$aI:(DE-Juel1)ICE-4-20101013