001     907750
005     20260123000910.0
024 7 _ |2 doi
|a 10.1029/2022GL098626
024 7 _ |2 ISSN
|a 0094-8276
024 7 _ |2 ISSN
|a 1944-8007
024 7 _ |2 Handle
|a 2128/31217
024 7 _ |2 altmetric
|a altmetric:128844103
024 7 _ |2 WOS
|a WOS:000800117400001
037 _ _ |a FZJ-2022-02192
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)129117
|a Ern, M.
|b 0
|e Corresponding author
245 _ _ |a The Mesoscale Gravity Wave Response to the 2022 Tonga Volcanic Eruption: AIRS and MLS Satellite Observations and Source Backtracing
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2022
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1653378347_22421
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a On 15 January 2022, the Hunga Tonga–Hunga Ha'apai volcano erupted violently. This exceptional event excited a manifold of atmospheric waves. Here, we focus on the mesoscale part of the wave spectrum. About 8.5 hr after the eruption a strong atmospheric gravity wave (GW) was observed in the stratosphere by the satellite instruments Atmospheric Infrared Sounder (AIRS) and Microwave Limb Sounder (MLS) in the vicinity of Tonga. By ray-tracing, we confirm the eruption as the source of this GW event. We determine the wave characteristics of the GW in terms of horizontal and vertical wavelengths and GW momentum flux. The strength of the GW is compared to the usual Southern Hemisphere flux values during this week. The event is comparable to the strongest convective events considering MLS, and exceptionally strong considering AIRS, which observes faster waves only.
536 _ _ |0 G:(DE-HGF)POF4-2112
|a 2112 - Climate Feedbacks (POF4-211)
|c POF4-211
|f POF IV
|x 0
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 1
536 _ _ |0 G:(DE-Juel-1)SDLCS
|a Simulation and Data Lab Climate Science
|c SDLCS
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)129125
|a Hoffmann, L.
|b 1
700 1 _ |0 P:(DE-Juel1)180866
|a Rhode, Sebastian
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)129143
|a Preusse, P.
|b 3
773 _ _ |0 PERI:(DE-600)2021599-X
|a 10.1029/2022GL098626
|n 10
|p e2022GL098626
|t Geophysical research letters
|v 49
|x 0094-8276
|y 2022
856 4 _ |u https://juser.fz-juelich.de/record/907750/files/Geophysical%20Research%20Letters%20-%202022%20-%20Ern%20-%20The%20Mesoscale%20Gravity%20Wave%20Response%20to%20the%202022%20Tonga%20Volcanic%20Eruption%20AIRS.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907750
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129117
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129125
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)180866
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129143
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-211
|1 G:(DE-HGF)POF4-210
|2 G:(DE-HGF)POF4-200
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-2112
|a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|v Die Atmosphäre im globalen Wandel
|x 0
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 1
914 1 _ |y 2022
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)3001
|2 StatID
|a DEAL Wiley
|d 2021-01-29
|w ger
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-18
915 p c |0 PC:(DE-HGF)0000
|2 APC
|a APC keys set
915 p c |0 PC:(DE-HGF)0001
|2 APC
|a Local Funding
915 p c |0 PC:(DE-HGF)0002
|2 APC
|a DFG OA Publikationskosten
915 p c |0 PC:(DE-HGF)0120
|2 APC
|a DEAL: Wiley 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21