Home > Publications database > The Mesoscale Gravity Wave Response to the 2022 Tonga Volcanic Eruption: AIRS and MLS Satellite Observations and Source Backtracing > print |
001 | 907750 | ||
005 | 20240712100833.0 | ||
024 | 7 | _ | |a 10.1029/2022GL098626 |2 doi |
024 | 7 | _ | |a 0094-8276 |2 ISSN |
024 | 7 | _ | |a 1944-8007 |2 ISSN |
024 | 7 | _ | |a 2128/31217 |2 Handle |
024 | 7 | _ | |a altmetric:128844103 |2 altmetric |
024 | 7 | _ | |a WOS:000800117400001 |2 WOS |
037 | _ | _ | |a FZJ-2022-02192 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Ern, M. |0 P:(DE-Juel1)129117 |b 0 |e Corresponding author |
245 | _ | _ | |a The Mesoscale Gravity Wave Response to the 2022 Tonga Volcanic Eruption: AIRS and MLS Satellite Observations and Source Backtracing |
260 | _ | _ | |a Hoboken, NJ |c 2022 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1653378347_22421 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a On 15 January 2022, the Hunga Tonga–Hunga Ha'apai volcano erupted violently. This exceptional event excited a manifold of atmospheric waves. Here, we focus on the mesoscale part of the wave spectrum. About 8.5 hr after the eruption a strong atmospheric gravity wave (GW) was observed in the stratosphere by the satellite instruments Atmospheric Infrared Sounder (AIRS) and Microwave Limb Sounder (MLS) in the vicinity of Tonga. By ray-tracing, we confirm the eruption as the source of this GW event. We determine the wave characteristics of the GW in terms of horizontal and vertical wavelengths and GW momentum flux. The strength of the GW is compared to the usual Southern Hemisphere flux values during this week. The event is comparable to the strongest convective events considering MLS, and exceptionally strong considering AIRS, which observes faster waves only. |
536 | _ | _ | |a 2112 - Climate Feedbacks (POF4-211) |0 G:(DE-HGF)POF4-2112 |c POF4-211 |f POF IV |x 0 |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Hoffmann, L. |0 P:(DE-Juel1)129125 |b 1 |
700 | 1 | _ | |a Rhode, Sebastian |0 P:(DE-Juel1)180866 |b 2 |u fzj |
700 | 1 | _ | |a Preusse, P. |0 P:(DE-Juel1)129143 |b 3 |
773 | _ | _ | |a 10.1029/2022GL098626 |0 PERI:(DE-600)2021599-X |n 10 |p e2022GL098626 |t Geophysical research letters |v 49 |y 2022 |x 0094-8276 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907750/files/Geophysical%20Research%20Letters%20-%202022%20-%20Ern%20-%20The%20Mesoscale%20Gravity%20Wave%20Response%20to%20the%202022%20Tonga%20Volcanic%20Eruption%20AIRS.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:907750 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)129117 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129125 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)180866 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129143 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-211 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Die Atmosphäre im globalen Wandel |9 G:(DE-HGF)POF4-2112 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 1 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-29 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-18 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |k IEK-7 |l Stratosphäre |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|