001     907763
005     20230815122839.0
024 7 _ |a 10.1002/vzj2.20202
|2 doi
024 7 _ |a 1539-1663
|2 ISSN
024 7 _ |a 2128/31573
|2 Handle
024 7 _ |a altmetric:128387701
|2 altmetric
024 7 _ |a WOS:000795930100001
|2 WOS
037 _ _ |a FZJ-2022-02196
082 _ _ |a 550
100 1 _ |a Groh, Jannis
|0 P:(DE-Juel1)158034
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Same soil, different climate: Crop model intercomparison on translocated lysimeters
260 _ _ |a Hoboken, NJ
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1658908850_15902
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Crop model intercomparison studies have mostly focused on the assessment of predictive capabilities for crop development using weather and basic soil data from the same location. Still challenging is the model performance when considering complex interrelations between soil and crop dynamics under a changing climate. The objective of this study was to test the agronomic crop and environmental flux-related performance of a set of crop models. The aim was to predict weighing lysimeter-based crop (i.e., agronomic) and water-related flux or state data (i.e., environmental) obtained for the same soil monoliths that were taken from their original environment and translocated to regions with different climatic conditions, after model calibration at the original site. Eleven models were deployed in the study. The lysimeter data (2014–2018) were from the Dedelow (Dd), Bad Lauchstädt (BL), and Selhausen (Se) sites of the TERENO (TERrestrial ENvironmental Observatories) SOILCan network. Soil monoliths from Dd were transferred to the drier and warmer BL site and the wetter and warmer Se site, which allowed a comparison of similar soil and crop under varying climatic conditions. The model parameters were calibrated using an identical set of crop- and soil-related data from Dd. Environmental fluxes and crop growth of Dd soil were predicted for conditions at BL and Se sites using the calibrated models. The comparison of predicted and measured data of Dd lysimeters at BL and Se revealed differences among models. At site BL, the crop models predicted agronomic and environmental components similarly well. Model performance values indicate that the environmental components at site Se were better predicted than agronomic ones. The multi-model mean was for most observations the better predictor compared with those of individual models. For Se site conditions, crop models failed to predict site-specific crop development indicating that climatic conditions (i.e., heat stress) were outside the range of variation in the data sets considered for model calibration. For improving predictive ability of crop models (i.e., productivity and fluxes), more attention should be paid to soil-related data (i.e., water fluxes and system states) when simulating soil–crop–climate interrelations in changing climatic conditions.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|x 0
|f POF IV
536 _ _ |a DFG project 460817082 - REWET - Vorhersage, Herkunft und Validierung von Tau, Raureif, Nebel und die Adsorption von Wasserdampf im Boden in landwirtschaftlichen Ökosystemen mithilfe eines Energiebilanzmodells, stabilen Isotopen des Wassers und Lysimeterdaten
|0 G:(GEPRIS)460817082
|c 460817082
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Diamantopoulos, Efstathios
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Duan, Xiaohong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ewert, Frank
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Heinlein, Florian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Herbst, Michael
|0 P:(DE-Juel1)129469
|b 5
|u fzj
700 1 _ |a Holbak, Maja
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kamali, Bahareh
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kersebaum, Kurt-Christian
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kuhnert, Matthias
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Nendel, Claas
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Priesack, Eckart
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Steidl, Jörg
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Sommer, Michael
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Pütz, Thomas
|0 P:(DE-Juel1)129523
|b 14
|u fzj
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 15
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 16
|u fzj
700 1 _ |a Wallor, Evelyn
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Weber, Tobias K. D.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Wegehenkel, Martin
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Weihermüller, Lutz
|0 P:(DE-Juel1)129553
|b 20
|u fzj
700 1 _ |a Gerke, Horst H.
|0 P:(DE-HGF)0
|b 21
773 _ _ |a 10.1002/vzj2.20202
|0 PERI:(DE-600)2088189-7
|n 4
|p e20202
|t Vadose zone journal
|v 21
|y 2022
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/907763/files/Vadose%20Zone%20Journal%20-%202022%20-%20Groh%20-%20Same%20soil%20different%20climate%20Crop%20model%20intercomparison%20on%20translocated%20lysimeters.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907763
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)158034
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129469
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)129523
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)129553
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-05-04
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-04-16T15:13:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-04-16T15:13:42Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-04-16T15:13:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21