000907773 001__ 907773
000907773 005__ 20230123110621.0
000907773 0247_ $$2doi$$a10.1038/s41467-022-29940-y
000907773 0247_ $$2Handle$$a2128/31204
000907773 0247_ $$2altmetric$$aaltmetric:127772743
000907773 0247_ $$2pmid$$apmid:35523783
000907773 0247_ $$2WOS$$aWOS:000791826000025
000907773 037__ $$aFZJ-2022-02202
000907773 082__ $$a500
000907773 1001_ $$00000-0002-6228-9933$$aBerke, Christoph$$b0$$eCorresponding author
000907773 245__ $$aTransmon platform for quantum computing challenged by chaotic fluctuations
000907773 260__ $$a[London]$$bNature Publishing Group UK$$c2022
000907773 3367_ $$2DRIVER$$aarticle
000907773 3367_ $$2DataCite$$aOutput Types/Journal article
000907773 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652961941_5303
000907773 3367_ $$2BibTeX$$aARTICLE
000907773 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907773 3367_ $$00$$2EndNote$$aJournal Article
000907773 520__ $$aFrom the perspective of many-body physics, the transmon qubit architectures currently developed for quantum computing are systems of coupled nonlinear quantum resonators. A certain amount of intentional frequency detuning (‘disorder’) is crucially required to protect individual qubit states against the destabilizing effects of nonlinear resonator coupling. Here we investigate the stability of this variant of a many-body localized phase for system parameters relevant to current quantum processors developed by the IBM, Delft, and Google consortia, considering the cases of natural or engineered disorder. Applying three independent diagnostics of localization theory — a Kullback–Leibler analysis of spectral statistics, statistics of many-body wave functions (inverse participation ratios), and a Walsh transform of the many-body spectrum — we find that some of these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
000907773 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000907773 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907773 7001_ $$00000-0001-8089-4355$$aVarvelis, Evangelos$$b1
000907773 7001_ $$00000-0002-1479-9736$$aTrebst, Simon$$b2
000907773 7001_ $$00000-0002-2991-4805$$aAltland, Alexander$$b3
000907773 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David P.$$b4
000907773 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-022-29940-y$$gVol. 13, no. 1, p. 2495$$n1$$p2495$$tNature Communications$$v13$$x2041-1723$$y2022
000907773 8564_ $$uhttps://juser.fz-juelich.de/record/907773/files/s41467-022-29940-y.pdf$$yOpenAccess
000907773 909CO $$ooai:juser.fz-juelich.de:907773$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b4$$kFZJ
000907773 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000907773 9141_ $$y2022
000907773 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000907773 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000907773 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000907773 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907773 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000907773 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907773 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000907773 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11
000907773 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000907773 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000907773 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z
000907773 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z
000907773 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z
000907773 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000907773 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000907773 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000907773 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000907773 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11
000907773 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11
000907773 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000907773 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11
000907773 920__ $$lyes
000907773 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000907773 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000907773 980__ $$ajournal
000907773 980__ $$aVDB
000907773 980__ $$aUNRESTRICTED
000907773 980__ $$aI:(DE-Juel1)PGI-11-20170113
000907773 980__ $$aI:(DE-Juel1)PGI-2-20110106
000907773 9801_ $$aFullTexts