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Transmon platform for quantum computing
challenged by chaotic fluctuations
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From the perspective of many-body physics, the transmon qubit architectures currently
developed for qguantum computing are systems of coupled nonlinear qguantum resonators. A
certain amount of intentional frequency detuning (‘disorder’) is crucially required to protect
individual qubit states against the destabilizing effects of nonlinear resonator coupling. Here
we investigate the stability of this variant of a many-body localized phase for system para-
meters relevant to current quantum processors developed by the IBM, Delft, and Google
consortia, considering the cases of natural or engineered disorder. Applying three indepen-
dent diagnostics of localization theory — a Kullback-Leibler analysis of spectral statistics,
statistics of many-body wave functions (inverse participation ratios), and a Walsh transform
of the many-body spectrum — we find that some of these computing platforms are dan-
gerously close to a phase of uncontrollable chaotic fluctuations.
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hen subject to strong external disorder, wave functions

of many-body quantum systems may localize in states

defined by (but not in trivial ways) the eigenstates of
the disordering operators. A standard paradigm in this context is
the spin-1/2 Heisenberg chain in a random z-axis magnetic field.
Here, the disorder basis comprises the “physical” p-qubits defined
by the spin states, different due to spin-exchange from the
eigenbasis of “localized” I-qubits)2. The latter are stationary but
remain non-trivially correlated, including in the deeply localized
phase.

Although it may seem paradoxical at first sight, intentional
“disordering” and many-body localization (MBL) in the above
sense are a vitally important resource in the most advanced
quantum computing (QC) platform available to date, the super-
conducting transmon qubit array processor. Physically, the
transmon array is a system of coupled nonlinear quantum
oscillators. At the low energies relevant to QC the system
becomes equivalent to the negative U Bose Hubbard model. Site
occupations 0 and 1 define the transmon p-qubit states, known as
“bare qubits” in QC language. Randomization of the individual
qubit energies maintains the integrity of these states in the pre-
sence of the finite inter-transmon coupling required for com-
puting functionality. This coupling makes the eigen-I-qubits of
the system different from the p-qubits. Considerable efforts are
invested in the characterization and control of the induced cor-
relations, known as ZZ couplings in the parlance of the QC
community?>,

Connections between MBL and superconducting qubits have
been considered earlier*, but mainly with a focus on applications
of qubit arrays as quantum simulators of the bosonic MBL
transition. Surprisingly, however, the obvious reverse question
has not been asked systematically so far: What bearings may qubit
isolation by disorder have on QC functionality? Reliance on
strong disorder localization is a Faustian approach inasmuch as it
invites the presence of quantum chaos, which is an arch-enemy of
quantum device control of any kind. Lowering the strength of
disorder brings one closer to the MBL-to-chaos transition, her-
alded by the growth of I-qubit correlations as early indicators for
the proximity of the uncontrollable chaotic phase. Since the key
requirement of QC, the execution of gate operations, requires on-
demand rapid growth of entanglement between I-qubits, it is
imperative that some definite amount of coupling is present. A
crucial question that we confront, therefore, is under which cir-
cumstances the necessary levels of coupling keep us outside the
chaotic zone.

While this question does not have an easy overall answer, one
general statement can be made with confidence: True to its
Faustian nature, the invitation of disorder into the platform can
be renegotiated, but not revoked. For instance, in its road map for
future devices, IBM aims to replace random variations of qubit
frequencies with a precision-engineered frequency alternation,
e.g., ... -A-B-A-B- .... While this pattern efficiently blocks reso-
nances between neighboring qubits, next-nearest neighbors are
now approximately degenerate. In a nonlinear system, such
degeneracies are potent triggers for instabilities; the only way to
control, or “localize” (qubit) states is with degeneracy lifting and
translational symmetry breaking— in short, with the retention of
some frequency disorder in the A and B sets.

With this general situation in mind, the purpose of this paper is
twofold. In its first part, we apply state-of-the-art diagnostic tools
of MBL theory to investigate the role of disorder in transmon
qubit arrays. We consider realistic models of qubit arrays
employed in the remarkable experimental efforts by the groups of
Delft>, Google®, IBM7, and others, assuming that device imper-
fections lead to random variations of individual qubit frequencies.
Within this framework, we describe the diminishing localization

of many-/-qubit wave functions, and the growth of I-qubit cor-
relations, upon lowering disorder. Considering small instances of
multi-transmon systems, we find that the phase boundary
between MBL and quantum chaos indeed may come dangerously
close to the parameter ranges of current experiments. We also
find that increasing the coordination number of the transmon
lattice, as necessary for 2D connected transmon networks,
increases many-body delocalization and the incipient chaos of the
dynamics.

In the second part of the paper, we apply this diagnostic
machinery to address the question of whether precision engi-
neering may be employed to ultimately realize ‘clean’ devices.
Considering the abovementioned IBM alternating sequence as a
case study, we find that it may indeed be operated at low values of
randomness. However, for the reasons indicated above, residual
frequency variations remain required to safeguard the stability of
the device; further purification will not merely lead to little fur-
ther improvement, but will actually be detrimental to its opera-
tion. Importantly, the diagnostic framework developed in the
paper may be applied to predict levels of randomness which lead
to optimal localization of quantum information for given para-
meters characterizing the clean device.

The general conclusion of this work is that further progress
towards larger QCs will be dependent on skirting the dangerous
attributes of chaotic parts of the parameter space. We know from
experience with general many-body systems that tendencies to
long-range correlations and delocalization increase with increas-
ing two-dimensional system connectivity. On this basis, the
monitors provided by the many-body localization theory may
become an essential resource in the perfection of future
transmon-based information devices.

Results

Overview. In what follows, we introduce our principal object of
study: a transmon array modeled with realistic qubit parameters.
Anticipating the importance of nonlinearities, we use effective
“low-energy Hamiltonians” solely to gain an intuition of the
underlying physics but perform all subsequent computations
avoiding any such approximations. We then introduce diag-
nostics inspired by MBL theory and apply them to detect sig-
natures of chaos. We discuss enhanced tendencies to instability
emerging in two-dimensional geometries and address the ques-
tion of whether the ideal of a stable and “perfectly clean” array
can be reached by advanced qubit engineering.

Transmon array Hamiltonian. Our study begins with the well-
established minimal model for interacting transmon qubits10:
H=4E>n; — Y E; cos¢, + T 2 nn;. 1)
i i (i)
Here, n; is the Cooper-pair number operator of transmon i,
conjugate to its superconducting phase ¢;. The transmon char-
ging energy Ec is determined by the capacitance of the metal body
of the transmon and is easily fixed at a desired constant, typically
about Ec =250 MHz (h=1). The Josephson energy E; is pro-
portional to the critical current of the junction. Except in very
recent work, it has been difficult to fix this constant reproducibly
to better than a few percent. However, typical values lie in the
vicinity of around 12.5 GHz, much larger than the charging
energy. Finally, electrical coupling between the transmons, often
via a capacitance, produces the charge coupling Tn;n;. The coef-
ficient T has varied over a substantial range in 15 years of
experiments!!; T values beyond 50 MHz are possible, but T < E¢
is a fundamental constraint. Current experiments are often in the
range T=3-5MHz, making T the smallest energy scale in the
problem.
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Fig. 1 Experimental parameters of recent IBM transmon arrays. a Layout
of the 65-qubit transmon array “Brooklyn”, currently available in IBM's
quantum cloud (https://www.ibm.com/quantum-computing/systems/), in
a heavy-hexagon geometry. The coloring of the qubits indicates the
variation of Josephson energies E; which is largely uncorrelated in space.
b Spread of the E; plotted for the “Brooklyn” chip, consistent with a
Gaussian distribution (solid line). Similar levels of disorder and distributions
are found in all transmon devices available in IBM's quantum cloud.

¢ Variance of the measured Josephson energies, SE), for nine realizations of
the 27-qubit “Falcon” design, and two realizations of the 65-qubit
“Hummingbird” design. While the mean varies unsystematically from
device to device, the variance remains very consistent, setting the
parameter favored in our “scheme A" study below. “Scheme 8" cases in
other labs have a much larger spread as indicated by the “flux tunable” level
in the figure. Recent proposals of using high precision laser-annealing'? as a
pattern engineering approach'3, discussed towards the end of the
manuscript, aim for a significant reduction of the E, variance; such pattern-
tuned transmon arrays have so far not appeared in any cloud device.

This model has been very concretely realized in experiments in
many labs in recent years, but notably also in the many chips that
have been made available for use in the IBM cloud service (https://
www.ibm.com/quantum-computing/systems/). These devices of the
“Falcon” and “Hummingbird” generations have employed trans-
mons laid out in the heavy-hexagon lattice geometry of Fig. la.
While these devices have fixed values of the coupling parameter T
and of the charging energy Ec, their Josephson energy E; varies
from transmon to transmon. This effectively random variation is, in
fact, crucially required to prevent the buildup of inter-transmon
resonances, and the compromising of quantum information; its role
in the physics of present-day transmon device structures, with
insights drawn from many-body localization theory, is the central
theme of this paper.

Before addressing the physics of the full model Eq. (1), let us
consider its low-energy limit. Applying a sequence of approxima-
tions (series expansion of the Josephson characteristic, rotating
wave approximation) one arrives at the effective Hamiltonian

E
H= Zi:yia;rui — f;u;ai(ajai +1)

(a.al +ala
+ OZJ) t1](a1a] + a; Ll])7 (2)
t. =

T
v;=\/[8E Ec, ;= o /E, E; .

To leading order, this model describes the transmon as a
harmonic oscillator, where the above choices of energy scales
place the frequencies ; ~ 6 GHz on average in the middle of a
microwave frequency band, convenient for precision control. The
attraction term, a remnant of the cos-nonlinearity, is considerably
smaller than the average harmonic term, which is desired for
transmon operation. Finally, the characteristic strength of the

nearest neighbor hopping coefficients, |t %%\/% (often

called J in the literature), continues to be the smallest energy
scale in the problem.

Unless novel engineering techniques are used (see below), the
abovementioned variations of the Josephson energy, 0Ej, are in
the few percent range; thus, at a minimum, there is variation in
oscillator frequencies v; of around dv; ~ (/2E;)SE; ~ 120 MHz,
when the typical E; = 12.5 GHz. This scale is much larger than the
particle hopping strength, which for the same parameter set is
about [t;;| = 6 MHz.

From the perspective of many-body physics, these variations
make Eq. (2) a reference model for bosonic MBL. For the above
characteristic ratio 6v/|t| ~20 we can hope that the system is in the
MBL phase, and we confirm this below. From the perspective of
transmon engineering, the frequency spread blocks the buildup of
local nearest neighbor or next-nearest neighbor inter-qubit
resonances. Below, we will discuss how these two perspectives
go together (and where they may depart from each other).
However, before turning to the observable consequences of
frequency spread, we note that there exist two broad design
philosophies for its realization in transmon array structures,
schemes A and B throughout.

Generally speaking, scheme A aims to suppress the frequency
spread to the lowest possible values required for the stability of
the structure, or dictated by limits in precision engineering. For
example, Fig. 1b shows that the spread of Josephson energies in
IBM devices is consistent with a Gaussian distribution (with no
stringent correlations from site to site). These observations hold
true for all current devices whose parameters are documented
publicly by IBM. Figure 1c shows that the variance 8E; has in fact
remained very constant over 9 realizations of “Falcon” chips (27
qubits) and the two latest “Hummingbird” chips (65 qubits). This
‘natural disorder’ regime was in use in many generations of
quantum computer processors’ that IBM has provided on its
cloud service since 2016. However, a significant reduction of
disorder has been reported in a very recent line of research at
IBM employing high precision laser-annealing!? as a pattern
engineering approach!® to be discussed towards the end of the
manuscript.

The complementary scheme B embraces frequency disorder as
a potent means of protecting qubit information, and in fact,
works to effectively enhance it. Examples in this category include
the recent reports from TU Delft on their extensible module for
surface-code implementation®. Google devices such as its 53-
qubit processor® contain engineered frequency patterns whose
aperiodic variation effectively realizes a form of the synthetic
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Fig. 2 Energy spectrum of a coupled transmon array. |llustrated are the energy levels E,(T) of Hamiltonian Eq. (1) on varying energy scales; the data
shown is for a coupled transmon chain of length N =10. Panel a illustrates the clustering of levels into energy bundles corresponding to the total number of
bosonic excitations. Panel b zooms into the five-excitation band, which upon further enlargement in panel ¢ reveals level repulsions that become
particularly visible for larger couplings. In panel ¢ we also mark in red a number of computational states (identified in this energy window at vanishing
coupling T=0). The further zoom-in of panel d traces one such computational state through a sequence of avoided level crossings.

disorder, where in addition the qubit coupling t; is lowered
during idle periods. In this way, the ratio 6v/t—the relevant scale
for localization properties—is drastically enhanced.

Below, we will consider both schemes 4 and B, and investigate
the incipient quantum localization and quantum chaos present in
the two settings. In our model calculations, we represent the
disorder by drawing independent samples from a Gaussian
distribution with standard deviation JE;, added to the mean
Josephson energy E;. As a representative A case we take
OE; =500 MHz (for a Josephson energy of E;= 12.5 GHz, giving
Ov =120 MHz, as above), while for a B case we will take 6E; and ov
some ten times larger (precise numbers are given below, see also
Supplementary Note 1 for further discussion of experimental
parameters). Note that from this point onward, we continue with
the full model Eq. (1).

Specifically, for scheme-a parameter ranges, the energy
eigenvalues of Eq. (1) cluster into energy bundles corresponding
to the total number of bosonic excitations, as seen in Fig. 2a.
Looking inside the 5-excitation band, we see (in Fig. 2b) a dense
tangle of energy levels. However, only some of these levels are
used to perform quantum computations in quantum processors;
the identification of these levels, as shown in Fig. 2c and discussed
in detail below, can only be done unambiguously if we are far
away from the chaotic phase.

Having QC applications in mind, we are primarily interested in
signatures of quantum chaos in the “computational subspace” of
the bosonic Hilbert space, ie., the space comprising local

occupation numbers ajai = 0,1, defining the p-qubit states for
QC. In that Hilbert space sector, the problem reduces to a
disordered spin-1/2 chain, another paradigm of MBL. Recent
results from the MBL community indicate that the separation
into a chaotic ergodic and an integrable localized phase is not as
straightforward as previously thought, and that wave functions
show remnants of extendedness and fractality even in the
‘localized’ phase!4.

Diagnostics. In the following, we analyze the Hamiltonian Eq. (1)
with a combination of different numerical methods tailored to the
description of localized phases:

e Spectral statistics: According to standard wisdom, many-
body spectra have Wigner-Dyson statistics in the phase of
strongly correlated chaotic states, and Poisson statistics in
that of uncorrelated localized states!®. Real systems show
more varied behavior, quantified below in terms of a
Kullback-Leibler divergence (see Methods for details). This
produces a charting of parameter space indicating the

chaos/MBL boundary and the rapidity with which the
boundary is approached.

e Wave function statistics: Focusing on the localization
regime, we analyze how strongly the eigenstates differ
from the localized states of the strictly decoupled system.

e Walsh transforms: We quantify the correlations between I-
qubits (known in the QC community as ZZ couplings, and
in the MBL community as 7-Hamiltonian tensor coeffi-
cients) by application of a Walsh transform filter. To the
best of our knowledge, this particularly sensitive tool has
not been applied so far to the diagnostics of MBL.

We consider a system of N coupled transmons in a one-
dimensional chain geometry—a minimalistic setting that allows
us to probe essential aspects of localization physics and quantum
chaos using the above diagnostics and whose computational
feasibility allows us to map out the broader vicinity of
experimentally relevant parameter regimes. Typical system sizes
vary between N =5 and 10 sites, as detailed below.

Spectral statistics. We probe the spectral signatures of this
coupled transmon system in an energy bundle of excited states
(see Fig. 2b), which are generated by a total of N/2 =5 excita-
tions. For the N=10 transmon chain at hand, this manifold
contains a total of 2002 different states. States within this bundle
that have local excitation numbers 0,1 can be viewed as typical
representatives in the computational subspace. Zooming in on
this mid-energy spectrum, we plot its spectral statistics in the
main panel of Fig. 3: The KL divergence vanishes when calculated
with respect to the Poisson distribution for small transmon
couplings, indicating perfect agreement with what is expected for
an MBL phase. This is also corroborated by the striking visual
match of the distributions in the corresponding inset of Fig. 3.
But the KL divergence is maximal when compared to
Wigner-Dyson statistics (red curve in Fig. 3). This picture is
inverted for large transmon couplings T = 70 MHz, where we find
an extremely good match to Wigner-Dyson statistics—unam-
biguous evidence for the emergence of strongly correlated chaotic
states. Probably even more important is the fact that these KL
divergences allow us to quantify proximity to the diametrically
opposite regimes for all intermediate coupling parameters. This
includes a region of ‘hybrid statistics’ around the crossing point of
the two curves, indicating an equal distance from both limiting
cases, which we will discuss in more detail below.

By way of this KL divergence one can then map out an entire
phase diagram, e.g., in the plane spanned by varying values of the
transmon coupling and Josephson energy, while fixing the
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Fig. 3 Spectral statistics. Shown are data for a chain of N =10 transmons
versus the coupling parameter T. The average Josephson energy is fixed to
= 44 GHz, and scheme-a disorder is used (8E;=1.17 GHz). These
statistics indicate a transition from Poisson statistics (blue) in the MBL
regime (at low coupling) to Wigner-Dyson statistics (red) in a many-body
delocalized regime (at large coupling). Shown are normalized
Kullback-Leibler (KL) divergences D, (see Eq. (7) in Methods) calculated
for the distribution of ratios of consecutive level spacings R, in the energy
spectrum, such as the ones illustrated in the insets for three characteristic
couplings. The KL divergences are normalized such that
Dyt (Pwigner Il Proisson) = 1 and vice versa. All results are averaged over at
least 2500 disorder realizations.

charging energy as shown in Fig. 4 (for scheme-a parameters).
This allows us to clearly distinguish the existence of two regimes,
the expected MBL phase (colored in blue) for small transmon
coupling and a quantum-chaotic regime (colored in red), where
the level statistics follow Wigner-Dyson behavior (with deloca-
lized, but strongly correlated states) for sufficiently strong
transmon couplings. It is this latter regime that one surely wants
to avoid in any experimental QC setting. But before we discuss
the experimental relevance of our results, we want to characterize
more deeply the quantum states away from this chaotic regime
using additional diagnostics.

Wave function statistics. One particularly potent measure of the
degree to which a given wave function is localized or delocalized,
is its inverse participation ratio (IPR), i.e., the second moment

IPR = %(Il//nl“), 3)

where the angular brackets denote averaging over disorder rea-
lization, and "y, is a symbolic notation for the summation over a
chosen basis (in the present case, the Fock basis). An IPR of 1
indicates a completely localized state (as in our example for
vanishing coupling T = 0), while an IPR less than 1 indicates the
tendency of a wave function towards delocalization!©.

Here we consider the IPR measured as an average over all
states in one of the energy bundles illustrated in Fig. 2a, e.g., the
manifold of typical states with N/2 =5 bit flips considered in
the spectral statistics above. Figure 4b shows the IPR in the same
parameter space as in (a). What is most striking here is that
the IPR rapidly decays—the contour lines in the panel indicate
exponentially decaying levels of 1/2, 1/4, 1/8, ...1/128—showing
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Fig. 4 Phase diagrams. a summarizes the spectral statistics by plotting the
Kullback-Leibler divergence Dy, with respect to the Poisson distribution in
the plane spanned by the Josephson energy E; and the transmon coupling T
for scheme-a parameters. One identifies an MBL regime (blue) for small
couplings and a quantum-chaotic regime (red) following Wigner-Dyson
statistics for large couplings. b summarizes the wave function statistics for
the same parameters by color-coding the inverse participation ratio (IPR)
showing a fast drop to values below 1/2 already for moderate coupling
strength. The gray lines indicate contour lines of constant IPR. All results
are averaged over at least 2000 disorder realizations. The spread of the
Josephson energies varies from 6E, ~ 0.4 GHz for E;=5 GHz to 6,

~1.7 GHz for E;=100 GHz (see Methods for details).

that the wave functions quickly delocalize. Note in particular, that
the IPR has dropped to a value of less than 10% in the region of
“hybrid statistics” identified in the level spectroscopy above.

Walsh-transform analysis. The MBL phase is the right place to
be for quantum computing since computational qubits (the I-
qubits above) retain their identity there. But, as indicated by the
drop in IPR, even the localized phase may be problematic. We,
therefore, apply another diagnostic that is specifically adapted to
identifying problems with running a quantum computation in the
MBL phase. It begins with the expectation, announced in!-2, that
the Hamiltonian of the multi-qubit system, in the I-qubit basis,
can be expressed as

H= }t;hirf + Ei:],]‘rfrz + Z K,Jkrzrzri +. (4)
by by b,
= Yo 27 L. (5)
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Eq. (4), the “r-Hamiltonian” of MBL theory!?, embodies the
observation that a diagonalized Hamiltonian can be written in a
basis of diagonal operators 77, which are the same as the Pauli-Z
operators (Z;) in the quantum-information terminology of Eq.
(5). Here the sum is over N-bitstrings b = b,b,...by, where each b;
is 0 or 1.

A system described by the 7-Hamiltonian can be an excellent
data carrier for a quantum computer, particularly if the high-
weight terms are small. If only the one-body terms in Eq. (4) are
non-zero, the system is an ideal quantum memory: In the
interaction frame, defined by the non-entangling unitary
transformation U(t) = exp(it 3_;h;77), all quantum states, includ-
ing entangled ones, remain stationary. Unfortunately, the
expectation of MBL theory is that the two-body and higher
interaction terms are non-zero and grow as the chaotic phase is
approached.

We have performed a numerical extraction of the parameters
of Egs. (4-5) for a five-transmon chain. We find that problematic
departures from full localization do indeed occur already at rather
small values of the qubit-qubit coupling parameter T. This
reinforces the message, in a basis-independent way, of our IPR
study. But this extraction must begin with a very non-trivial step,
namely the identification of the qubit eigenenergies of the
transmon Hamiltonian. Since this Hamiltonian Eq. (1) is bosonic,
it has a much larger Hilbert space than the spin-1/2 view
embodied in Egs. (4)-(5). The qubit states, those with bosonic
occupations limited to 0 and 1, are not separated in energy from
the others but are fully intermingled with states of higher
occupancy, as illustrated in Fig. 2c. It would thus appear that this
truncation is rather unnatural—but it is in fact crucial to the
whole quantum computing program with transmons. It is
essential to pick out, from all the eigenlevels E, of the full
Hamiltonian Eq. (1) as shown in Fig. 2, just the subset of levels Ey,
that can be associated with a bitstring label b (cf. Eq. (5)).

Having performed such a state identification (as discussed in
the Methods) and tagged the subset of eigenlevels Ey(T) that can
be identified as qubit states, the coefficients of the r-Hamiltonian
are easily obtained by a Walsh-Hadamard transform!”:

() = 55 =D =1 () By (1)
S ©
= S DMV E(D).

Being a kind of Fourier transform, the Walsh transform functions
to extract correlations, in this case in the correlations of the
computational eigenstates (in energy). Figure 5 shows these
coefficients vs. T. For small T, many of the expectations from
MBL theory!? are fulfilled: There is a clear hierarchy according to
the locality of the coefficients. Thus, nearest-neighbor ZZ
interactions are the largest, followed by second-neighbor ZZ
and contiguous ZZZ couplings, and so forth. Jumps occur in these
coefficients, initially very small, which arise from the switching of
labeling at anticrossings.

The two-body (J;;/ZZ) terms are known and carefully analyzed
in transmon research®!819. Their troublesome consequences,
including dephasing of general qubit states, and failure to
commute with quantum gate operations, add overhead which is
ultimately found to be insupportable, enforcing a practical upper
limit of J;; ~50-100 kHz. This limit, marked (dashed line) in
Fig. 5b, is exceeded already at T=3 MHz. Even though the
transition to chaos is still a long way off, quantum computing
becomes very difficult above this limit.

Scheme B: spread frequency distribution. Other techniques for
executing entangling gates leave considerably more freedom to
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Fig. 5 Walsh-transform analysis. a Comparison of the ¢, coefficients of Eg.
(6) for a five-qubit chain with scheme-A parameters, for two values of the
coupling T. Along the x-axis, are the 31 different values of the bitstring

b with at least one non-zero bit. We use a graphical depiction of each
bitstring, as a vertical column of five boxes, so that the first bitstrings,
starting from the left, are 01000, 00001, 00010, etc. With this graphical
depiction, one can see immediately which of the five transmons are
involved in the given z-Hamiltonian coefficient. The |cp| are sorted from
largest to smallest for the T=2 MHz data, which reveals a clear hierarchy
of strengths according to the maximal distance between two 1's in the
bitstring. There is no such systematic behavior for the large-T case (plotted
for the same ordering). b Absolute value of averaged Walsh coefficients as
a function of the coupling T. The inset introduces a new coloring notation
for the bitstrings b; blue-colored bit boxes indicate that the ¢, shown is
averaged over all cases with the same maximal distance of two 1's. The
convention is explained more fully in the Methods section, Fig. 9. Also
shown for comparison is the absolute value of the Walsh coefficient for the
specific bitstring b = 01101. The dashed line and the shading above mark
the “danger zone" |cp| 2 100 kHz indicated by recent experimental studies
on ZZ coupling3.

increase the disorder, with 0E; values in the GHz range. This
option can forestall the growth of problematic precursors of
chaotic behavior. A good example of a quantum computer that
uses this freedom is the surface-7 device of TU Delft’. During
gate operation, the qubit frequencies are temporarily tuned into
resonant conditions that “turn on” entanglement generation. This
is done in a pattern that does not lead to any extensive deloca-
lization. In the 53-qubit quantum computer of Google®, this
tuning is also available, but in its operation, an additional strategy
is used: extra hardware is introduced to also make T tunable.
Being able to set the effective T to zero (although only in a
perturbative sense) of course eliminates the problem of deloca-
lization, and in this latest Google work, 6E; has been returned to a
small value. Google made major changes in its “Hamiltonian
strategy” in recent years® that have led them to their recent
success. In Supplementary Note 2, we discuss scheme-B para-
meters (as found in recent Delft chips®) quantitatively using our
three diagnostics.

Transmon arrays in higher dimensions. All the conclusions of
the last few sections have been reached by calculations for
transmons coupled in a one-dimensional chain geometry. How-
ever, actual quantum information architectures are two dimen-
sional, and we have therefore also simulated the surface-7

6 | (2022)13:2495 | https://doi.org/10.1038/s41467-022-29940-y | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29940-y

ARTICLE

a 3 5
4 ,” \\/” N
2 6 & 0 0 O 0 0 @
1 2 3 4 5 6 7
1 7

Dy (Pl |PPoisson) IPR
b 0.5 .
400
ey g
N
T
o 200
-
20
c 400
— e g
N
T
o 200
-
x3
B | 20
0 20 40 0 20 40
T[MHz] T[MHz]

Fig. 6 Two-dimensional transmon geometries. a Surface-7 (s7) geometry.
b Phase diagram of seven coupled transmons, coupled in a surface-7
geometry. The inclusion of two additional couplings in comparison to a chain
of seven transmons (c7) leads to significant shifts in the phase diagram
calculated for scheme-a parameters, as illustrated in the left panel for the level
statistics and in the right panel for the IPR. Shown on the left is the shift of the
line indicating where the normalized KL divergence with regard to Poisson
statistics Dy, has increased to 0.5 (see also Figs. 3 and 4). On the right, we
indicate the shift of the line indicating where the IPR drops below 0.5, akin to
the lower panel in Fig. 4. All results are averaged over at least 1500 disorder
realizations. ¢ Phase diagram of a 3 x 3 transmon array. All results are
averaged over at least 2500 disorder realizations. For both geometries, the
same scheme-A parameters as in Fig. 4 were used.

layout>?0 as well as a 3 x 3 transmon array as minimal examples
in this category. The surface-7 chip comprises a pair of square
plaquettes, which is obtained from a chain of seven transmons by
including two additional couplings, see top panel of Fig. 6.
(Google’s 53-qubit layout extends this principle to a large square
array extension.)

The study of two-dimensional geometries, or of one-
dimensional arrays shunted by long-range connectors, is
motivated by the realization that the case of strictly one-
dimensional chains is exceptional: in one dimension, “rare
fluctuations” with anomalously strong local disorder amplitudes
may block the correlation between different parts of the system,
enhancing the tendency to form a many-body localized state. In
higher dimensions, such roadblocks become circumventable,
which makes disorder far less efficient in inhibiting quantum
transport. For an in-depth discussion of the effects of dimension-
ality on MBL, we refer to ref. 8.

Our simulations of the surface-7 and 3 x 3 architectures, where
we have chosen scheme-a parameters, are summarized in Fig. 6b, c.
The spectral and wave function statistics data indicate that, not
surprisingly, chaotic traces are rather more prominent than in the
one-dimensional simulations (and despite the fact that to get the
surface-7 geometry, we nominally added only two extra couplings
in comparison to a purely one-dimensional geometry, see Fig. 6a).
The bottom line is that the comfort zone introduced by
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Fig. 7 Frequency alternation patterns. a A-B-A-B pattern. b A-B-A-C
pattern optimized for scheme-a architectures on the heavy-hexagon
geometry. Note that while b is an idealized structure!?27, the A-B pattern of
ais one that is currently implemented in experiment'3, and thus with a
slightly imperfect setting of frequencies, visible especially on the far left and
right of the device.

disorder schemes is considerably diminished when including
higher-dimensional couplings.

Qubit frequency engineering. Until very recently, process var-
iations in Ej have led to an inevitable spread in qubit frequencies,
as described by the effectively Gaussian distributions employed
above (see Fig. 1b). However, the development of a high precision
laser-annealing technique!? (LASIQ, see Fig. 1c and Supple-
mentary Note 3) has changed the situation and is opening the
prospect to clone qubits with unprecedented precision. IBM
proposes!3 to use this freedom and realize arrays with A-B-A-B,
or A-B-A-C (Fig. 7) frequency alternation, effectively blocking
unwanted hybridization between neighboring qubits. However,
even then a residual amount of random frequency variation
remains essential for the functioning of the device. For example, a
perfect A-B-A-B sequence would block nearest neighbor hybri-
dization at the expense of creating dangerous resonance between
the next-nearest qubits; more formally, perfectly translationally
invariant arrays would have extended Bloch eigenstates, different
from the localized states required for computing.

The question thus presents itself as to how to optimally
navigate a landscape defined by the extremes of Bloch extended,
chaotic, and many-body localized wave functions for absent,
intermediate, and strong disorder, respectively. In Supplementary
Note 4, we apply the diagnostic framework introduced earlier in
the paper to address this question in quantitative detail. To
summarize the results, we observe that for diminishing disorder
the transmon-array Fock space disintegrates into a complex
system of mutually decoupled subspaces, reflecting the complex-
ity of the A-B or A-B-A-C “unit cells”. The strength of the
residual disorder determines whether wave functions are
chaotically extended or localized within these structures. Employ-
ing the inverse participation ratio as a quality indicator, we find
that recent IBM engineering succeeded in hitting the optimum of
near localized states with IPRs close to unity. However, it is
equally evident that further reduction of the disorder would
delocalize these states over a large number of qubit states and be
detrimental to computing; disorder remains an essential resource,
including in devices of the highest precision.

Discussion

The subject of this study has been an application of the state-of-
the-art methodology of many-body localization theory to realistic
models of present-day transmon computing platforms. In the
mindset of the localization theorist, all transmon quantum
information hardware has in common that it operates in a regime
where the tendency of quantum states to spread by inter-qubit
coupling is blocked by the detuning of qubit frequencies—the
many-body localized phase. Within this phase, there is con-
siderable freedom for the realization of localization-protected
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architectures; different strategies include a: weak coupling at weak
detuning (IBM), or B: strong, intentionally introduced detuning
interspersed by sporadic and incomplete coupling (Delft/Google).
In this background, we have explored the integrity of different
localized phases, in view of the omnipresent phase boundary to a
chaotic sea of uncontrollable state fluctuations in the limit of too
weak detuning and/or too strong coupling.

The single most important insight of this study is just how
extended the twilight zone of partially compromised quantum
states already is before reaching the boundary to hard quantum
chaos. One may object that the existence of a crossover zone is
owed to the smallness of the transmon arrays of 5-10 units
studied in this work. However, it has to be kept in mind that the
dimension of the random Hilbert spaces in which the many-body
quantum states live is exponential in these numbers and large by
any (numerical) standard of localization theory. This indicates
that “finite-size effects’ in these systems are notorious and must be
kept in mind for computing architectures of technologically
relevant scales.

A second unexpected finding is that early indicators of chaotic
fluctuations show in different ways in different observables.
Among these, the least responsive observable is many-body
spectral statistics, the most frequently applied diagnostics of the
MBL/chaos transition. However, the computational states them-
selves respond far more sensitively to departures from the limit of
extreme localization. We have observed this tendency in the
standard observable for wave function statistics, the inverse
participation ratios, where Fig. 4 shows tendencies to strong wave
function spreading already in parameter regimes where spectral
statistics suggests complete safety. Surprisingly, however, the
Walsh transform diagnostic—which is uncommon in MBL the-
ory, but highly relevant as an applied quality indicator for the
integrity of physical qubit states—responds even more sensitively
to parameter changes away from the deep localization limit.
Expressed in the language of quantum information
technology, it indicates strong ZZ coupling and the onset of ZZZ
coupling already in regimes where the participation ratios are
asymptomatic.

We note that the most recent experimental work has been
strongly focused on the necessity to break the linkage between
larger T coupling and the appearance of ZZ coefficients. On the
hardware side, ingenious new coupler schemes?! show nearest-
neighbor ZZ reduced to well below the danger level of 100 kHz of
earlier work. It is further shown that control techniques, involving
advanced refocusing strategies, also strongly diminish the effect of
nearest-neighbor ZZ for a given T?2. But our work provides a
warning that these innovations may ultimately not be enough: all
other couplings in the r7-Hamiltonian hierarchy, including next
neighbor ZZ and ZZZ, remain neither diagnosed nor ameliorated
in the current experiments.

Third and finally, our study of precision-engineered qubit
arrays has revealed a general structure which we believe is ubi-
quitous in weakly disordered transmon arrays: a restructuring of
the “total Hilbert space” into subspaces which are weakly cross-
correlated, but strongly (‘chaotically’) correlated within them-
selves. These hierarchies include spaces of fixed excitation num-
ber, or still further refined subspaces of these, distinguished by
specific qubit permutation symmetries. Where this splintering
occurs, a twofold task presents itself: first, identify the pattern of
relevant spaces, and second apply the diagnostic tools discussed
in earlier sections within these small spaces. Particular care must
be exercised in cases where the relevant spaces overlap in energy.
Absent considerable inter-space correlations one may then be
tricked into the conclusion of Poissonian level statistics (locali-
zation!) where in fact wave functions are chaotically extended
over the basis of a computationally relevant space. In

Supplementary Note 4, we detail all this intricate phenomenology,
using the case study of the LASIQ engineered A-B-A-B pattern as
an example illustrating these principles and the development of
reliable predictions for the integrity of qubit wave functions.

What is the applied significance of these observations? One
bottom line is that further reduction of the frequency variance
may be dangerous. All transmon-based quantum technology
operates in a tension field defined by the desire to optimally
protect (detune) and efficiently operate (couple). There are
different approaches to resolving this conflict of interests,
scheme A “weak coupling/weak detuning” and scheme B
“transient-incomplete coupling/strong detuning” defining two
master strategies. Our study indicates that the A approach is more
vulnerable to chaotic fluctuations. We go so far as to speculate
that it may not sustain the generalization to larger and two-
dimensionally interconnected array geometries required by more
complex applications. However, regardless of what hardware is
realized, the findings of this work indicate that the shadows of the
chaotic phase are much longer than one might have hoped and
that careful scrutiny of chaotic influences should be an integral
part of future transmon device engineering.

Methods

Spectral statistics via Kullback-Leibler divergence. To quantitatively analyze
the spectral statistics, we look at the distribution of the ratios of adjacent level
spacings r,, = AE,/AE, ;%3 (in order to avoid level unfolding) by comparing to
what is expected for these ratios in Poisson or Wigner-Dyson statistics. This is
often done via qualitative observations, such as focusing on the limit of r — 0,
where the distribution exhibits a maximum for Poisson statistics, but vanishes for
Wigner-Dyson statistics (see, e.g., the insets of Fig. 3). However, a recent study?*
(of a Fock space localization transition) has shown that such inspections may trick
one into false conclusions and that the Kullback-Leibler (KL) divergence2> pro-
vides a far more reliable quantitative alternative. The KL divergence

D (P Il Q) = X py log (P—) @)
k Ul

defines an entropic measure quantifying the logarithmic difference between two
distributions P and Q. In our case, the py are extracted from the numerical spec-
trum for a given set of parameters, while the g follows one of the two principal
spectral statistics considered here. Note that in Fig. 3 we plot R, = min(r,, 1/r,) in
order to restrict to the range [0, 1].

Data collapse and phase transition. A particularly consistent picture emerges if
one performs a simple rescaling of the numerical data in both panels of Fig. 4. As
shown in Fig. 8, the individual traces of both the KL divergence and the IPR for
varying values of the Josephson energy E; (shown in the insets) all collapse onto
one another when rescaling the coupling parameter T — TE} with the exponent y
being the single free parameter. Such a data collapse is typically considered strong
evidence for the existence of a phase transition, i.e., we can manifestly separate the
MBL phase for small transmon couplings from a truly chaotic phase for sufficiently
large couplings.

This also allows us to mark a Rubiconian line on our phase diagram (indicated
by the green line in the top panel of Fig. 4) that should not be crossed in any
quantum computation scheme, as all exquisitely prepared quantum information
would be lost quickly upon entering the realm of quantum chaos lying beyond. The
data collapse at a value =~ 0.5 follows from a simple argument: thinking of the
wave functions as states living on a high dimensional lattice defined by the
occupation number configurations n = (ny, n,, ..., ny) (n;=0, 1 for the
computational subspace), individual occupation number states # are connected to a
large number of neighbors via the “hopping matrix elements”, t;. Wave functions
hybridize over a pair of configurations n, m, provided |t;| 2 |A€,|, where Ae,, is

the energy difference between the two configurations in the limit ¢ — 0. Inspection

of Eq. (2) shows that Ae,,,, depends on the Ejs as E}/z — E]l/2 ~ E;I/Z(E, — E/]). In
; § [

the analysis of Fig. 8, the random deviations are scaled such that (E; — E ])) ~ E}/ 2
such that Ae,,, is effectively independent of E;. However, t; ~ T. E;/ ?, indicating

that TE}/ ? is the relevant scaling variable for the transition where the two
parameters T and E; are concerned.

State identification for Walsh transform. We find that there is a workable
procedure for identifying computational states in the bosonic spectrum, which
however starts to become problematic long before we reach the MBL-chaotic phase
boundary. We adopt the following assignment procedure: at T =0 all states have
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Fig. 8 Data collapse. The individual traces of the KL divergence and IPR,
underlying the phase diagrams of Fig. 4 and shown in the two insets, are
collapsed onto each other by rescaling the coupling parameter with respect
to the Josephson energy as T — TE{ with an exponent u~ 0.54. As

TEY ~ |t|/dv - E‘JH/Z, a TEY interval, whose lower (upper) bound is
determined by the minimal (maximal) E, value, belongs to each |t|/év value.
The areas shaded in black indicate the TE’] range associated with the |t|/év
label next to it. The upper boundary corresponds to £, =100 GHz. The
lower boundary is obtained for the smallest E, for which data points at that
particular |t|/év exist. The lower boundary of the gray-shaded interval
corresponds to £, =10 GHz, the smallest Josephson energy considered in
the data collapse.

Fig. 9 Color-coding of Walsh coefficients for a system of five-transmon
qubits. The first column shows the individual qubit assignments (light
color ="0", red color ="1"), and the second and third columns indicate
ways to average coefficients according to the enclosing brackets.

exact bosonic quantum numbers, so the 2V eigenstates with bitstring label b (the
Walsh transforms of the bitstrings in Eq. (5)) are immediately identified there. We
increase T; as long as no near-crossings of energy levels occur, the labeling remains
unchanged. We then find that the first near-crossings that occur have the character
of isolated anticrossings with very small gaps. In this situation, we can confidently
associate the label b with the diabatic state (i.e., the one that goes straight through
the anticrossing). We show this by the coloring of Fig. 2c. Empirically, this iden-
tification procedure works through many anticrossings, up to about halfway to the
phase transition; gradually, gaps become larger, and the identification of qubit
states becomes more ambiguous (Fig. 2d). Naturally, in the chaotic phase, eigen-
state thermalization says that there is no hope of consistently identifying any
eigenstates as information-carrying multi-qubit states.

For clarity of visualization, we do not show all Walsh coefficients ¢, in Fig. 5
and in Supplementary Fig. 2, but average over those with bitstring labels of an
equal maximal distance of two 1’s, as illustrated in Fig. 9 for a five-transmon chain
with the coefficients of maximal distance four.

Simulation parameters. All simulation data shown in the main manuscript were
calculated for Ec = 0.25 GHz. For scheme-a disorder, we use dv ~ E¢/2, resulting in

a Josephson energy spread 0E; = /EE;/8. The Walsh-transform analysis was
performed for E;=12.5 GHz.

Classical chaos in transmon arrays. We may incidentally remark that this work
started from a project study2® on classical chaos in the transmon system. Classi-
cally, the transmon Hamiltonian Eq. (1) describes a system of coupled mathe-
matical pendula of mass m = 1/8E¢ and gravitational acceleration g = 8ECE; (in
units where 7 =1 and £=1 (pendulum length)). Nonlinearly coupled pendula
generally show a transition from integrable motion at low energies to hard chaos at
high energies. (There are desktop gimmicks with just two coupled masses
demonstrating the phenomenon.) The principal observation of the project was that
already the classical two transmon Hamiltonian showed tendencies to chaos when
excited to sufficiently high energies. The generalization to ten coupled oscillators
made the situation worse, with Lyapunov exponents signaling uncontrollable
dynamics for energies matching those of QC applications with 0 and 1 qubit states,
and at time scales way below typical coherence times.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used to generate the data used in this study is available from the corresponding
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