000907775 001__ 907775 000907775 005__ 20240610121328.0 000907775 0247_ $$2doi$$a10.1063/5.0091067 000907775 0247_ $$2ISSN$$a0021-9606 000907775 0247_ $$2ISSN$$a1089-7690 000907775 0247_ $$2ISSN$$a1520-9032 000907775 0247_ $$2Handle$$a2128/31268 000907775 0247_ $$2pmid$$a35597650 000907775 0247_ $$2WOS$$aWOS:000798560600010 000907775 037__ $$aFZJ-2022-02204 000907775 082__ $$a530 000907775 1001_ $$0P:(DE-Juel1)174327$$aClopés, Judit$$b0 000907775 245__ $$aAlignment and propulsion of squirmer pusher–puller dumbbells 000907775 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2022 000907775 3367_ $$2DRIVER$$aarticle 000907775 3367_ $$2DataCite$$aOutput Types/Journal article 000907775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655095385_30926 000907775 3367_ $$2BibTeX$$aARTICLE 000907775 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000907775 3367_ $$00$$2EndNote$$aJournal Article 000907775 520__ $$aThe properties of microswimmer dumbbells composed of pusher–puller pairs are investigated by mesoscale hydrodynamic simulations employing the multiparticle collision dynamics approach for the fluid. An individual microswimmer is represented by a squirmer, and various active-stress combinations in a dumbbell are considered. The squirmers are connected by a bond, which does not impose any geometrical restriction on the individual rotational motion. Our simulations reveal a strong influence of the squirmers’ flow fields on the orientation of their propulsion directions, their fluctuations, and the swimming behavior of a dumbbell. The properties of pusher–puller pairs with an equal magnitude of the active stresses depend only weakly on the stress magnitude. This is similar to dumbbells of microswimmers without hydrodynamic interactions. However, for non-equal stress magnitudes, the active stress implies strong orientational correlations of the swimmers’ propulsion directions with respect to each other, as well as the bond vector. The orientational coupling is most pro- nounced for pairs with large differences in the active-stress magnitude. The alignment of the squirmers’ propulsion directions with respect to each other is preferentially orthogonal in dumbbells with a strong pusher and weak puller, and antiparallel in the opposite case when the puller dominates. These strong correlations affect the active motion of dumbbells, which is faster for strong pushers and slower for strong pullers. 000907775 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0 000907775 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000907775 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b1$$eCorresponding author 000907775 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b2$$eCorresponding author 000907775 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0091067$$gVol. 156, no. 19, p. 194901 -$$n19$$p194901$$tThe journal of chemical physics$$v156$$x0021-9606$$y2022 000907775 8564_ $$uhttps://juser.fz-juelich.de/record/907775/files/Invoice_JCP22-AR-00885_00744.pdf 000907775 8564_ $$uhttps://juser.fz-juelich.de/record/907775/files/clopes_gompper_winkler_jcp_156.194901.2022.pdf$$yOpenAccess 000907775 8767_ $$8JCP22-AR-00885_00744$$92022-05-09$$a1200180953$$d2022-05-11$$eAPC$$jZahlung erfolgt$$zUSD 3500,- 000907775 909CO $$ooai:juser.fz-juelich.de:907775$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000907775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b1$$kFZJ 000907775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b2$$kFZJ 000907775 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0 000907775 9141_ $$y2022 000907775 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02 000907775 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000907775 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02 000907775 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000907775 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-25$$wger 000907775 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25 000907775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25 000907775 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25 000907775 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25 000907775 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25 000907775 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2021$$d2022-11-25 000907775 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25 000907775 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25 000907775 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25 000907775 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0 000907775 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x1 000907775 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2 000907775 9201_ $$0I:(DE-82)080008_20150909$$kJARA-SOFT$$lJARA-SOFT$$x3 000907775 9801_ $$aFullTexts 000907775 980__ $$ajournal 000907775 980__ $$aVDB 000907775 980__ $$aI:(DE-Juel1)IAS-2-20090406 000907775 980__ $$aI:(DE-Juel1)IBI-5-20200312 000907775 980__ $$aI:(DE-82)080012_20140620 000907775 980__ $$aI:(DE-82)080008_20150909 000907775 980__ $$aUNRESTRICTED 000907775 980__ $$aAPC 000907775 981__ $$aI:(DE-Juel1)IAS-2-20090406