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ABSTRACT

The properties of microswimmer dumbbells composed of pusher—puller pairs are investigated by mesoscale hydrodynamic simulations
employing the multiparticle collision dynamics approach for the fluid. An individual microswimmer is represented by a squirmer, and various
active-stress combinations in a dumbbell are considered. The squirmers are connected by a bond, which does not impose any geometrical
restriction on the individual rotational motion. Our simulations reveal a strong influence of the squirmers’ flow fields on the orientation
of their propulsion directions, their fluctuations, and the swimming behavior of a dumbbell. The properties of pusher-puller pairs with
an equal magnitude of the active stresses depend only weakly on the stress magnitude. This is similar to dumbbells of microswimmers
without hydrodynamic interactions. However, for non-equal stress magnitudes, the active stress implies strong orientational correlations
of the swimmers” propulsion directions with respect to each other, as well as the bond vector. The orientational coupling is most pro-
nounced for pairs with large differences in the active-stress magnitude. The alignment of the squirmers’ propulsion directions with respect
to each other is preferentially orthogonal in dumbbells with a strong pusher and weak puller, and antiparallel in the opposite case when the
puller dominates. These strong correlations affect the active motion of dumbbells, which is faster for strong pushers and slower for strong
pullers.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0091067

I. INTRODUCTION

Hydrodynamics plays a fundamental role in the motion of
micro-organisms, in general, and microswimmers, in particular,
as the vast majority of them are embedded in a liquid environ-
ment. A wide spectrum of micro-organisms generates distinctive
flow fields for specific vital purposes, such as motility, feeding,
and mechanosensing."” Other factors, such as geometric con-
straints, interfaces, or the presence of nearby other microswimmers,
also affect their behaviors.”* The self-generated flow field of a
microswimmer can be rather complex’ "' and depends distinc-
tively on its actual actuation mechanism. Microswimmers with the
propulsion at the front are classified as pullers, e.g., Chlamydomonas
reinhardtii, and those with propulsion at the rear as pushers, e.g.,
Escherichia coli.'””"* Their hydrodynamic far field is well approxi-
mated by a force dipole due to their force- and torque-free nature
in absence of external forces, however, with opposite signs.'””'* This

distinction gives rise to unique characteristic behaviors; for instance,
pushers align parallel to solid surfaces, whereas pullers align along
the normal direction.'”

The coexistence of pushers and pullers in nature is the rule
rather than the exception, e.g., mixtures of algae and bacteria in
the ocean. Such systems exhibit nonequilibrium fluctuations in the
fluid flow due to their opposite swimming patterns, and a change
in the mean swimming speed of the two populations.'” Theoret-
ical considerations predict that, in 1:1 mixtures of pushers and
pullers, two-point hydrodynamic correlations are equal to those of a
suspension of noninteracting swimmers.'® In contrast, asymmetric
concentrations yield a plethora of different mesoscale motion pat-
terns and a strong influence of the pusher—puller composition on the
ordered collective motion.'” These studies indicate a route to control
and tune the orientational order and the collective motion in active
microswimmer suspensions by combining antagonistic swimmer

types.
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The design of a synthetic self-propelling micromachine
(microbot) poses major challenges. The development of suitable
concepts for autonomous and steerable motion constitutes a major
advancement in the strive to create microbots.'*”" ** Even more,
smart synthetic micromachines need to be able to adopt and respond
autonomously to their environment in order to perform a prede-
fined task, such as targeted drug delivery.”’” A promising route in
this endeavor is to build a microbot from different components
with specific functionality, such as controlled propulsion or sensing.
In this context, the understanding of the nature of pusher—puller
interactions in stable assemblies could be fundamental for the
design of optimized synthetic micromachines or even bio-hybrid
microswimmer-based artificial devices.” """

To shed light onto the emergent swimming properties of
pusher—puller assemblies, we study the characteristics of dumb-
bells comprising a pusher and a puller squirmer, which are con-
nected by a bond, maintaining a nearly constant spatial separation.
Such dumbbells constitute a minimal model suitable for study-
ing the fundamental interactions between antagonistic microswim-
mers. The squirmer model itself was initially intended to describe
multi-ciliated micro-organisms, such as Paramecia,””" but has
been extended to encompass diverse self-propelled entities due
to its simplicity and generic character.””"” In addition, several
other dumbbell-type models for microswimmers, not composed of
squirmers, have been proposed.”

Previous theoretical and simulation studies”””” on the influ-
ence of the microswimmer flow fluid on the properties of squirmer
dumbbells composed of pairs of either pushers or pullers reveal a
strong influence of thermal fluctuations and orientational degrees
of freedom on their swimming ability.”” In particular, a far-
field consideration predicts that no stable forward swimming can
be achieved for freely rotating, torque-free squirmer dumbbells,
whereas a restricted rotational motion of the individual squirmers
by (rigid) bonds implies torques and stable swimming motion.”’
Thermal fluctuations fundamentally alter the swimming properties
of such dumbbells.”” The fluctuations imply a rotational diffusive
motion of the individual squirmers and lead to swimming. Despite
the fluctuations, the squirmers’ propulsion directions assume pre-
ferred activity-dependent average directions in the stationary state,
which strongly affects their mean-square displacement; the lat-
ter is the largest for weak pushers and the smallest for strong
pullers. For puller-pusher pairs, theoretical studies predict sta-
ble swimming when the trailing squirmer is a strong pusher with
an enhanced swimming speed compared to that of the individual
squirmers.”

In this study, we analyze the properties of freely rotating
pusher—puller squirmer pairs linked by a finite-length bond in a
three-dimensional unbounded fluid. The fluid is described by the
multiparticle collision (MPC) dynamics method, a particle-based
mesoscale simulation approach including thermal fluctuations.”””
MPC has successfully been applied in a broad range of soft active
matter studies, especially involving squirmers.”'®7**10~%

Our study reveals a strong influence of the squirmers’ flow
fields on their relative orientation, their orientation with respect to
the bond vector, and the dumbbells dynamics. In terms of the active-
stress dependence, we observe weak effects as long as the magnitude
of the active stresses of the pusher and puller are equal. In con-
trast, strong effects appear for pairs with large relative differences
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in the active-stress magnitude. The alignment of the propulsion
directions is found to be preferentially orthogonal with respect to
each other in dumbbells with a large pusher and a small puller
active stress, and antiparallel in the opposite case when the puller
dominates. These strong correlations imply a drastically different
dynamics, which is faster for strong pushers and slower for strong
pullers.

This article is structured as follows: In Sec. II, the model
is described and the simulation approach is presented. The ori-
entational dynamics is studied in Sec. III, the properties of the
bond in Sec. IV, and the stationary-state orientation of the propul-
sion directions with respect to each other and the bond vector
in Sec. V. In Sec. VI, results for the squirmer dynamics are pre-
sented. Finally, Sec. VII summarizes our findings and presents the
conclusions.

Il. MODEL
A. Dumbbell model

The dumbbell is composed of two microswimmers, which are
linked by the harmonic potential,

_k _1)?
U—2(|R| )] (1)

of finite bond length I. Here, R = r, — r; is the bond vector between
the microswimmers centers of mass located at 1 and r,, and « is the
spring constant (cf. Fig. 1).

The microswimmers are modeled as squirmers—rigid spher-
ical colloidal particles of diameter o, mass M, and the prescribed
axisymmetric tangential slip velocity

wt= 2l pe-lleei-a] @

on their surfaces.””"*"***" Here, ey is the unit vector in the direction
of the propulsion of squirmer k (k € {1,2}) and e;, the unit vector
from a squirmer’s center to its surface. The active stress is character-
ized by B, and determines the nature of the propulsion—for pullers
B > 0, for pushers 8, < 0, and for neutral squirmers 3, = 0. Without
loss of generality, we consider the squirmer k = 1 as puller and k = 2
as pusher. Their propulsion directions are affected by thermal fluc-
tuations and their flow fields. We characterize the squirmer activity
by the Péclet number Pe defined as'**°

FIG. 1. Sketch of the squirmer dumbbell system. The squirmers of diameter ¢ are
connected by the bond vector R of rest length / and are propelled in the directions
e and ey. The shading indicates the different propulsion mechanisms, where the
first squirmer (k = 1) is a puller and the second squirmer (k = 2) is a pusher.
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where vy and DY are the swim velocity and the rotational diffu-
sion coefficient of a single squirmer in a three-dimensional dilute
solution, respectively.

B. Fluid model: Multiparticle collision dynamics (MPC)

MPC describes the fluid as N point particles of mass m. The
particle positions r; and velocities v; (i=1,...,N) are updated
in two alternating steps—streaming and collision.””” During the
streaming step, the MPC particles move ballistically for a collision
time A, and their positions are updated as

ri(t +h) = ri(t) + hvi(t). (4)

The interactions between fluid particles take place in the collision
step. Here, the particles are sorted into the cells of a cubic lat-
tice of mesh size a that defines the local interaction environment.
The velogiies of the fluid particles after the collision, vi(t + h), are

given by
Vi(t+h) = veu(t) + R(€)Viem () — Fiem

x [y fem  (Tjem — R(@)Vjem) | (5)
jecell

within the stochastic rotation dynamics (SRD) variant of MPC,
with local linear and angular momentum conservation (MPC-
SRD+a).”"" Here, R(«) is the rotation matrix for the rotation of the
relative velocities Vicm = Vi — Vem With respect to the cell’s center-
of-mass velocity v, where the ith particle belongs to. The rotation
is performed around a randomly oriented axis by a fixed angle
a.” The axis orientation is chosen independently for every cell
and for every collision step. I is the moment-of-inertia tensor of
the particles in the cell’s center-of-mass reference frame, and ticm

ARTICLE scitation.orgljournalljcp

is the position of the ith particle with respect to the center-of-
mass position rc, of the particles in the cell. The discretization of
space in a lattice breaks the Galilean invariance, which is restored
by a random shift of the collision lattice at each collision step.””
The cell level Maxwell-Boltzmann-scaling (MBS) canonical ther-
mostat is applied to maintain a constant temperature.”” The MPC
algorithm is highly parallel, which we exploit by employ a graph-
ics processor unit (GPU)-based version for a high performance
gain.”!

C. Coupling squirmers and MPC fluid

The spherical squirmers are neutrally buoyant and are charac-
terized by their center-of-mass position ry, propulsion direction ey,
translational velocity vy, and angular momentum L. Their dynam-
ics proceeds in two steps in order to account for the interactions
with the MPC particles.’ 7% 1n brief (details are described in Refs. 5
and 16):

1. Streaming step

During the MPC streaming step, the squirmers move
according to their rigid-body dynamics, where the rotational
dynamics is described by quaternions.””” Interactions with over-
lapping fluid particles result in changes in the colloids’ linear and
angular momenta, especially the squirming velocity #," is transferred
to the MPC fluid.

2. Collision step

To implement no-slip boundary conditions, phantom parti-
cles of the same mass and density as the MPC fluid are uniformly
distributed inside a squirmer, and Maxwellian-distributed thermal
velocities are assigned to them in addition to the translational
and rotational velocities of the colloid itself.””’ The phantom par-
ticles are taken into account in the collision step [Eq. (5)] in
cells overlapping with the colloid. The appearing linear and angu-
lar momenta changes of phantom particles are transferred to the
colloidal particle.”

101

FIG. 2. Squirmer dumbbell flow fields in the laboratory reference frame for different active stresses, (a) (8,,,) = (1,-5), (b) (3,-3), and (c) (5, —1). Squirmer 1 is
located at x/o = —1 and squirmer 2 at x/a = 1. The orientations of the squirmers’ propulsion directions are indicated by arrows. The flow fields have been obtained by a

superposition of the exact flow fields of the individual squirmers®>*

and the Stokeslets emerging from the bond force, where the propulsion directions and the bond vector

are assumed to be in the same plane. The Stokeslets by the bond force give rise to a force dipole (see the supplementary material, movies M1-M3).
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D. Parameters

The squirmer diameter is o =6a and its mass M =4mn
(a/2)*(N.)/3, where (N,) = 10a™> is the average number of MPC
fluid particles per collision cell. The bond length is [ = 8a and the
spring constant k = 5000kzT/(ma*), with the Boltzmann constant
ks and the temperature T. The ratio I/o =4/3 is small enough
to ensure pronounced hydrodynamic interactions between the two
squirmers.”’ The rigid-body equations of motion are integrated

by using the time step At =2 x 107>/ma2/(kgT). For the MPC
fluid, the collision time is h = 0.05y/ma?/(ksT) and the rotation
angle o = 130°. These parameters yield the MPC fluid viscosity
1 = 7.2y/mkpT/a** and the rotational diffusion coefficient D} = 2.2

x 107*\/kpT/(ma?) for an individual passive colloid or squirmer.
Three-dimensional periodic boundary conditions are applied, with
a cubic simulation box of side length L = 40a. Results are obtained
by averaging over at least five independent realizations for Pe < 30
and three for Pe = 60 due to the weaker effects by thermal fluctua-
tions in the latter case. In each realization, 10" MPC steps have been
performed, which correspond to a displacement of 10°a of a single
squirmer.

The considered range of swim velocities vo/+/kgT/m =(4/3-8)
x107%, corresponding to Péclet numbers Pe = 10,-60, ensures
small Reynolds numbers Re=wv¢0/v=0.12-0.72<1, where
v=1n/(m(N;)/a®) is the kinematic viscosity. These Reynolds
numbers are an upper limit obtained for individual squirmers,
which typically move faster than a dumbbell.

I1l. ORIENTATIONAL DYNAMICS

A. Orientational dynamics of individual squirmer
in a dumbbell

The swimming direction of a squirmer in dilute solution varies
due to thermal fluctuations, and the autocorrelation function for the
propulsion direction exhibits the exponential decay,

(e(1) - eu(0)) = &%, ®)
similar to that of an active Brownian particle (ABP).”"**” Once
assembled in a dumbbell, the flow fields (cf. Fig. 2) of the two
squirmers interfere with each other and affect their rotational
dynamics. Moreover, the bond force implies Stokeslets, which addi-
tionally influence the squirmers’ dynamical properties. Figure 2
illustrates the emerging flow fields and their differences for vari-
ous propulsion directions and combinations of active stresses. The
flow field of an individual squirmer is obtained by the full analytical
solution of the corresponding Stokes equation with the boundary
condition of Eq. (2).” The flow fields of the two squirmers, together
with those of the Stokeslets of the bond force, are then superim-
posed. As a consequence, the boundary condition at the squirmer
surface is not exactly fulfilled; yet, the various figures qualitatively
capture the complexity of the flow fields.

Figure 3(a) displays the autocorrelation functions of the
squirmers’ swimming direction for pusher—puller pairs with various
combinations of the active stresses 3, and f3,. The autocorrelation
functions, identical for the two squirmers, deviate from a single-
exponential decay to different degrees. The decay rate depends on
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FIG. 3. (a) Autocorrelation function of a squirmer’s propulsion direction in a dumb-
bell as a function of the scaled time D°Rt at Pe = 30 and various active-stress
pairs B, = |B,| as well as 3, + |B,| as displayed in the legend. The autocorrela-
tion functions of the two squirmers are equal, hence, {(e(t) - e(0)) = ({es(t)
- e1(0)) + (e2(t) - €(0)))/2. D is the rotational diffusion coefficient of an
individual squirmer in an unbounded fluid. The black solid line indicates the orienta-
tion autocorrelation function of an active Brownian particle [Eq. (6)]. (b) Normalized
characteristic decay times DORTS of the propulsion direction autocorrelation function
for various active-stress pairs (3, 8,) and Péclet numbers (see legend). The blue
symbols indicate results for various pairs (8, 3,) (top-axis). The red symbols are

for pairs B, = |B,| (bottom axis). The value for an ABP is D%ts = 1/2.

the strength of the active stress, with a larger effective rotational
diffusion coefficient compared to an individual ABP for most com-
binations, except for the combination (f,,,) = (5,—1). The latter
is a consequence of the nearly antiparallel average stationary-state
alignment of the two propulsion directions (Sec. V A). Two effects
contribute to the decay of the autocorrelation function—the random
orientational dynamics of an individual squirmer and the overall
rotational diffusion of the dumbbell mainly driven by the active
squirmer motion (cf. Sec. III B and the supplementary material,
movies M1-M3). Thereby, the respective contribution depends on
the active stresses 3.
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To quantify the decay of the autocorrelation function, we
define the characteristic time 7, as the time, where the correla-
tion function has decreased to 1/e of its initial value at t =0, i.e.,
(ex(7s) - ex(0)) = 1/e. As Fig. 3 indicates, 7; depend only weakly on
|B,| for pairs with 8, = |8, ], specifically for |,| > 1, with the largest
7, values for || = 1. Large variations are obtained for dumbbells
with 8, # [B,|, specifically for larger Pe. At Pe 2 30, Fig. 3(b) shows a
strong drop of 7, for the change from (f,,5,) = (1,-5) to (2,-4),
followed by a strong 7 increase with increasing strength of the
active stress of the puller and decreasing stress magnitude of the
puller.

B. Bond vector autocorrelation function

The bond vector autocorrelation function of a dumbbell
with two ABP monomers (no hydrodynamic interactions) can be
calculated analytical as

21)(2)712
1= (yrm)?

where yr = 2D% and the relaxation time 7; depends on the activ-
ity.** In the asymptotic limit of large activity, Pe — oo, the corre-
lation function becomes (R(t) - R(0)) = I exp(-2D%t), as for the
propulsion direction e of a single ABP.”"*

The bond vector autocorrelation functions of dumbbells exhibit
a qualitatively similar behavior as those of the propulsion directions,
with an approximate exponential decay, reflecting the tight coupling
between squirmer propulsion and the active dumbbell rotational
diffusion. The corresponding characteristic relaxation times 7, are
presented in Fig. 4. For B, = |B, |, 7}, essentially decrease with increas-
ing |B,|. Except for B, = 1 and 2 for Pe = 10, all 7}, values are smaller
than the value of an ABP dumbbell D%Tb =1/2. In contrast, for
B, #|B,|, 7 increase with increasing 8, and decreasing |f,|. An

(R(t) - R(0)) = P~ + (=), @)

(17_5) (2*_4) (3_3) (41_2) (5 _1)

07_ T T T T T ]
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FIG. 4. Characteristic decay times D??n, of the bond vector autocorrelation function
for various active-stress pairs (,, 3,) and Péclet numbers (see legend). The top-
axis scale indicates various pairs (3, 3,) for the blue symbols. The red symbols
are for pairs 8, = |B,| (bottom axis).
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increasing Pe amplifies the difference between the minimum and the
maximum values of 7, for the considered range of Pe. In general,
the combination of 8, # |f,| and small B, exhibits a slow rotational
dynamics, and the relaxation times are even smaller than for an ABP
dumbbell. In contrast, the combination of a strong puller and weak
pusher accelerates the relaxation, as for the correlation function of
the propulsion direction.

This active-stress dependence is very different from that
of squirmer dumbbell pairs with equal active stresses (8, = f3,),
where long relaxation times in the range of -1 < f <2 have
been observed.”” More importantly, those correlation functions
assume negative values for § < -3, indicating a rotational motion
of the whole dumbbell, a motility pattern absent in the considered
pusher—puller dumbbells.

IV. BOND FORCE

The bond exerts a force on the squirmers by their activity
and thermal fluctuations. The force on squirmer k follows from the
harmonic potential (1) as Fy = —(—1)*F,R/|R|, with F, = «(|R| - I).

As displayed in Fig. 5, the average bond force (F;) is posi-
tive for all combinations of B,, ,, and Péclet numbers, i.e., the
active forces pull on the bond. This preference is related to the
instability of configurations, where the propulsion directions point
toward each other, i.e., for 7/2 > ¢, > -7/2 and 7/2 < ¢, < 37/2.
Already a slight misalignment of the propulsion directions for such
angles leads to a rotation of the whole dumbbell until the squirmers’
propulsion directions point (antiparallelly) apart from each other.
The average bond force depends only very weakly on the active
stress in the case f8, = |B,| independent of Pe. This is consistent
with the far-field prediction of the difference in the swimming
velocities in the direction of the bond.”””” In as much as the propul-
sion directions are perfectly aligned, the active-stress contribution
vanishes for 8, = |B,| and the bond force is proportional to Pe.
Deviations from a perfect parallel alignment imply small contribu-
tions of the active stress to the bond force, and (F;)/Pe increases
slightly with increasing Pe. Similarly, for ABP dumbbells, a lin-
ear increase in the bond force with increasing Pe is obtained, and
dumbbell pairs of identical squirmers exhibit only a weak deviation
from this dependence.’”” Our results are in contrast to predictions
for athermal pusher—puller dumbbells with the same |,],> where
a parallel orientation of the propulsion directions, i.e., e; - e, =1,
leads to stable swimming and a zero bond force. The differences
in the forces emphasize the necessity to properly take into account
thermal fluctuations. The latter are responsible for a particular rela-
tive alignment of the squirmers’ propulsion directions, as discussed
in Sec. V.

Noteworthy is the strong variation of the average bond
force for pusher—puller combinations with f, # |8, |. The results in
Fig. 5 show that the force is the weakest for 8, =1 and 8, < -4,
and the strongest for |$,| = 3. The strongest variations occur for
combinations f3; — B, ~ 6. As discussed in Sec. V, this is a con-
sequence of a particular relative alignment of the propulsion
directions. With the observed preferred alignments, the weak
deviation of the bond force from the linear Pe dependence for
the pairs (fB,,f,) = (1,-5) and (B,,5,) = (1,-5) is consistent
with the far-field prediction for the velocity difference,”” espe-
cially due to the rather small variations in the alignment of the

J. Chem. Phys. 156, 194901 (2022); doi: 10.1063/5.0091067
© Author(s) 2022

156, 194901-5


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

(17_5) (27_4) (37_3> (47_2) (57_1>
7_ T T T T ]
6F .
< ]
< 5~ \ -
o "k i
Ste—e /k\ ]
~ [ i
24F // .
3'_ —@— Pe =60 —- Pe = 607
L —@— Pe =30 —— Pe = 30
- O Pe=20 Pe =20
C Pe =10 Pe=10]

2 1 I 1 I 1 I 1 I 1

1 2 3 4 5

5]

FIG. 5. Normalized average bond forces for various active-stress pairs (f;,3,)
and Péclet numbers (see legend). The top-axis scale indicates various pairs
(B4, 3,) for the blue symbols. The red symbols are for pairs 3, = |,| (bottom
axis).

propulsion directions with respect to the bond vector with increas-
ing Pe (Sec. V B).

V. STATIONARY STATE SQUIRMER ORIENTATION
A. Relative alignment of propulsion directions

The interfering squirmer flow fields lead to preferred relative
average orientations of the squirmers’ propulsion directions. To
quantify this preferred orientation, we consider the parameter

p={e1-e)={cos 9), (8)

which is the average of the cosine of the angle between the squirmers’
propulsion directions.’”

The dependence of p on the active stresses B, and f3, is dis-
played in Fig. 6(a) in the form of a contour plot. Combinations of
pusher—puller pairs with 3, = |B,| exhibit only small variations with
increasing magnitude ;. This is emphasized in Fig. 7. In addition,
Fig. 7 shows that —1 < p <0 in this case, and hence, the relative
orientation angle is in the range 180° > 9 > 90° for 60 > Pe > 10.
Thus, the squirmers’ propulsion directions change from a nearly
orthogonal orientation with respect to each other at small Pe to a
nearly antiparallel orientation at large Pe. This can be understood
in terms of the squirmers’ vorticity flow field, which implies a pre-
ferred relative orientation of the propulsion directions.”””” In the
limit vy — 0, i.e., only the active stresses contribute to the flow field,
the far-field approximation yields the stationary-state fixed point
9 =90°, i.e., an orthogonal orientation of the two propulsion direc-
tions for B, = |B,|. In addition, a fixed point with ¢, = 180° and
@, = 0 is obtained, corresponding to an antiparallel alignment of e;
and e;. Both fixed points are independent of 8, = |B,|. The thermal
fluctuations strongly affect the stability of the fixed points and lead
to relative alignments different from the predicted values (Fig. 7).

ARTICLE scitation.orgljournalljcp

FIG. 6. (a) Average relative alignment of the squirmers’ propulsion directions
p = (e - &) and (b) the variance Ap? as a function of their active stresses B,
and 3, for Pe = 30.

This explains the gradual shift of p from p~ 0 to p~ —0.8 with
increasing Pe. Moreover, with increasing Pe > 1, the vorticity by
the squirmer flow field becomes less relevant, and the relative ori-
entation is determined only by the propulsion, with the fixed point
(919,) = (180°,0). "

A different behavior is obtained for f, #|f,|, with strong
variations in the relative orientation, especially along the line
B, - B, ~6 [Fig. 6(a)]. At Pe=30, p~0.5 for (B,,8,) = (1,-5),
and the angle 9~ 60° is the smallest compared to that of other
pairs (f,,f3,). The value p ~ —0.8 for various active-stress pairs,
specifically for (8,,,) = (5,—1), is consistent with the fixed point
(9,,9,) = (180°,0) obtained from the vorticity.”””" Thermal fluc-
tuations cause deviations from the predicted perfect antiparallel
alignment, especially for smaller values of Pe. The alignment in the
opposite limit (B,,8,) = (1,-5) cannot simply be explained within
the hydrodynamic far-field approximation for the vorticity. Here,
the near-field effects or the coupling between the vorticity field by
the active stresses and the swimming of the squirmers could be
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FIG. 7. Average relative alignment of the squirmers’ propulsion directions

p = (e - &) as a function of the active-stress pairs 8, = |B,| (bottom axis) and
B, # |B,| (top axis), and various Péclet numbers Pe.

relevant. Evidently, the two combinations of active-stress magni-
tudes are not equivalent and lead to different swimming behaviors.
This emphasizes the strong influence of the microswimmer flow
field, specifically the strong impact of the bond, because the geo-
metrical constraint by the bond is the causative for a particular
orientation of the individual squirmers.

The dispersion of the relative orientation is quantified by the
variance of p,

Apz = ((e1 . ez)2> —pz. (9)

As displayed in Fig. 6(b), Ap* changes only weakly with the active
stress in the case 8, = |f3, ], but the variance is pronounced. The most
severe fluctuations appear for the combinations 8, — 8, ~ 6. In par-
ticular, for (B,,8,) ~ (3,—4), |p| is rather small, and the relative
alignment is weak, i.e., the hydrodynamic flow fields play a minor
role in the orientational dynamics of the squirmers compared to
the pronounced thermal fluctuations. Combinations with (,, ;)
~ (=5,1) and (f,,f3;) ~ (=1,5) exhibit rather weak fluctuations,
which implies a quite stable alignment.

B. Alignment of propulsion direction with bond

The preferred orientation of the squirmers with respect to the
bond vector is characterized by the parameters,

Gk = {cos p) = <8T1;R). (10)

The two squirmers show distinctively different g, values as dis-
played in Fig. 8. The puller exhibits a wide range of orienta-
tions, with angles varying from ¢, ~ 75° for (B,,5,) = (1,-5) to
¢, ~ 150° for (fB,,f,) = (5,—1), which is more clearly displayed
in Fig. 9. The pusher [Fig. 8(b)] is preferentially aligned paral-
lel to R with “average” angles in the range of 0 < ¢, $45° and,

ARTICLE scitation.org/journalljcp

Puller

Pusher

FIG. 8. Average alignment g, of the squirmers’ propulsion directions with respect
to the bond vector as a function of their active stresses 3, and j3, at Pe = 30 for
(a) the puller (g4) and (b) the pusher (g, ).
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FIG. 9. Average alignment parameter g, of the squirmers’ propulsion direction ey
with the bond vector [Eq. (10)] as a function of the active-stress pairs 8, # |B,|
and various Péclet numbers. The blue symbols correspond to g, (puller) and the
red ones correspond to g, (pusher).
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hence, points always away from the puller for all combinations of
B, and fB,. Figure 9 indicates an increasing preference in the align-
ment along the bond vector for both squirmers with increasing Pe,
where the pusher is strongly aligned for all puller-pusher pairs,
and the puller for pairs with 8, > 3. Importantly, in these cases, the
propulsion directions point in opposite directions away from each
other.

As discussed in Sec. V A, the strong alignment of both squirm-
ers for pairs with 8, >3, and especially large Pe, agrees with
the theoretical prediction based on the far-field expression of the
vorticity.””” However, the large q, values for 8, < 3 cannot simply
be explained by vorticity, when the propulsion directions are located
in the same plane as the bond vector. Here, the near-field effects may
affect the relative alignment. The g, values in Fig. 9 and the p, values
in Fig. 7 indicate that the two propulsion directions are, in general,
twisted with respect to a plane including the bond vector. By charac-
terizing the twist using the quantity cosy = (e1 x R/|R|) - e;, where
x is the torsional angle, we find nearly zero averages for cos y, reflect-
ing the symmetry in the orientations of e; and e, with respect the
torsional plane. However, the average (|cosy|) is non-zero, and we
find (|cos x|} ~ 0.2, which suggests an out-of-plane twist induced by
the flow. This twist may be responsible for the observed preference
in the alignment of the e, with respect to the bond vector, specifically
for 3, < 3.

VI. DUMBBELL DYNAMICS

Figure 10 displays examples of dumbbell center-of-mass trajec-
tories for various active-stress pairs. The trajectories of pairs with
B, =1B,| are rather similar. Stronger variations in the dynamics
appear for the pairs (8,,$,) = (1,-5) and (f,,,) = (5,-1), with
a smaller displacement for the latter.

This difference is reflected in the center-of-mass mean-square
displacement (MSD) in Fig. 11. For every puller—pusher pair, we find
a close-to-ballistic short-time dynamics, which turns into a long-
time diffusive motion. The crossover between the two regimes is
determined by the effective rotational diffusion coefficient, which

100

—100~20

FIG. 10. Dumbbell center-of-mass trajectories for the active-stress pairs
(B1:B,) = (5,-1),(3,-3), (1,-5) at Pe = 30 with the respective projections
onto the xy and xz planes.
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FIG. 11. Dumbbell center-of-mass mean-square displacement as a function of
the scaled time Df?t for the indicated active-stress pairs, and the Péclet number
Pe = 30. The red line indicates the corresponding ABP dumbbell theoretical
prediction [Eq. (11)].

depends on Pe and the active-stress combination [cf. Fig. 3(b)]. The
change from a weak puller-strong pusher (f8,,3,) = (1,-5) pair to
a strong pusher-weak puller (8,,$8,) = (5,—1) pair slows down the
MSD considerably. The comparison of the squirmer dumbbell MSD
with the active MSD contribution of an ABP dumbbell,””***°

[SYNY

(¥

((r(t) = r(0))*) =

(th+e_YRt—l), (11)

|

yields good agreement at long times for the pair (8,,58,) = (1,-5).
In the active ballistic regime, the swimming velocity is affected by
the squirmer flow fields for all active-stress combinations, but the
active diffusive motion is quantitatively captured by the theoretical
expression.

Figure 12 presents active translational diffusion coefficients Dr
for various active-stress pairs extracted from the linear long-time
regime of the MSD. Except for the pair (8,,,) = (1,-5) at Pe = 60,
the Dr values are smaller than the value of D} for an ABP dumbbell.
Interestingly, Dy is, within the accuracy of the simulations, inde-
pendent of 8 for pairs with 8, = |B,|. Merely the values for Pe = 60
increase with increasing B,. In terms of Pe-dependence, the diffu-
sion coefficient decreases significantly with increasing Pe. At Pe = 60
and B = 1, Dr is about a factor of 20 smaller than D}. We expect
Dr to further decrease with increasing Pe. For the considered mixed
pairs, the dependence on Pe is weaker as long as 8, # |$3,|. In partic-
ular, the ratio Dy/D} seems to approach an Pe-independent value
for (8,,5,) = (5,—-1). The decrease of Dy with increasing Pe, espe-
cially for pairs with 8, > 3 and 8, > -3, is related to the antiparallel
alignment of the propulsion directions as well as their twist. How-
ever, Dr is still activity dependent and increases with increasing Pe,
since D} ~ Pé’.

The variation of the diffusion coefficient with the active stress
of puller-pusher pairs is orders of magnitude smaller than that
of dumbbells comprising identical squirmers.”” This is related to
the stronger orientational preference of the latter, specifically a
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FIG. 12. Active diffusion coefficients, D7, obtained from the long-time linear time

regime of the MSD for the indicated active-stress pairs and Péclet numbers.
DY = PezD%az/12 is the diffusion coefficient of the ABP dumbbell [Eq. (11)].

strong antiparallel alignment of the propulsion directions of pullers
with large active stress, and correspondingly a very small diffusion
coefficient.

The simulations of Ref. 18 suggest that any quantity of a 1:1
mixture of (independent) pushers and pullers, which depends on
the spatial and temporal velocity correlation function, coincides with
that of a suspension of noninteracting swimmers. This approxi-
mately applies to the MSD of our dumbbells at short times for
B, = |B,| when compared with the MSD of ABP dumbbells, but not
for longer times and pusher—puller pairs with large differences in
the magnitude of the active stress. Evidently, the presence of a bond
plays an important role in addition to the asymmetry of the squirmer
flow fields.

VIl. SUMMARY AND CONCLUSIONS

We have performed mesoscale hydrodynamic simulations
of active squirmer dumbbells composed of pusher and puller
monomers by applying the multiparticle collision dynamics
approach for the fluid. By varying the magnitudes |,| of their
active stress, we have analyzed the emerging conformational and
dynamical properties of the asymmetric squirmer dumbbells.

The distinct squirmer flow fields and the geometric constraint
by the bond promote a specific, active-stress-dependent rotational
dynamics of the individual squirmers as well as the dumbbell itself, a
preferred average relative orientation of their propulsion directions,
and an active diffusional motion. In the case of equal active-stress
magnitudes, f, = |f,|, orientations and dynamical quantities typi-
cally depend only weakly on the stress magnitude. However, the
variation with the Péclet number can be large. Pronounced changes
in the emergent properties appear for asymmetric pairs with strongly
differing active stresses, especially for the pairs (f8,,$,) = (1,-5)
and (B,,,) = (5,-1). Here, the interference of the squirmers’ flow
fields strongly influences the orientational properties of the puller
with respect to the bond vector, whereas the orientation e, of the

ARTICLE scitation.org/journalljcp

pusher is nearly unaffected. This governs ultimately the dumbbells’
translational motion.

The analytical studies of Ref. 23, based on athermal squirmer
dumbbells, predict a zero bond force for all pusher—puller pairs with
parallelly aligned propulsion directions along the bond vector and
the same [f,|. In our simulations, the average bond force is always
non-zero due to the thermal fluctuations in the squirmers’ propul-
sion directions, and the configuration with parallel e, is unstable.
This emphasizes the role of thermal fluctuations on microswimmers
(microbots) and their emergent properties.

Neither the weak dependence of the active translation diffu-
sion coefficient Dy on |, | of dumbbells with 8, = |B,| nor the good
agreement of the MSD of the dumbbell for (f,,$,) = (1,-5) with
the theoretical expression of the MSD of an ABP dumbbell indi-
cates a cancellation of hydrodynamic correlations as is observed in
1:1 pusher-puller mixtures.'® In contrast, in all considered cases,
the hydrodynamic correlation plays a major role, which is reflected
in the strong orientational correlations of the squirmers and the
dependence of Dr on the Péclet number.

We have focused on the separation I/o = 4/3 of the two squirm-
ers, which yields significant near-field hydrodynamic interactions
between the squirmers. The studies provide, in combination with
thermal fluctuations, deeper insight into the properties of microscale
active assemblies, reaching beyond the far-field predictions of ather-
mal dumbbells.” Our studies on the distance dependence of the
relative alignment of the propulsion directions for squirmer dumb-
bells with 3, = j3, reveal a decreasing influence of the flow field with
increasing distance, as expected from the spatial decay of hydrody-
namic interactions. Qualitatively, a similar reduction is expected of
the considered systems with 8, # 3,.

Our simulations indicate that the properties of microbots can
be controlled by suitable combinations of pusher—puller pairs. An
asymmetric combination with a strong pusher and a weak puller
slightly enhances the swimming performance compared to an ABP
dumbbell at large Pe and reduces bond stress, whereas an opposite
combination leads to a considerable slowing down of the active dif-
fusive motion. In fact, the MSD of an active ABP dumbbell is only
half of that of an individual ABP or squirmer. Thus, a combina-
tion of squirmers typically leads to a slowdown of their dynamics
compared to an individual squirmer. Nevertheless, by dynamically
changing the active stresses of squirmers in a dumbbell, the trans-
lational motion can be tuned. In contrast, the properties of pairs of
squirmers with the same |B, | are less sensitive to changes in the mag-
nitude of the active stress, and hence, they are also less sensitive to
possible polydispersity effects.

SUPPLEMENTARY MATERIAL

The supplementary material provides movies, which illustrate
the alignment of the propulsion directions of the individual squirm-
ers, their individual rotational diffusive motion, and the rotational
diffusive dynamics of a dumbbell itself in the dumbbell center-of-
mass reference frame. Movies for the active-stress pairs (§,,,)
= (1,-5) (M), (B, 3,) = (3,-3) (M2),and (B,,8,) = (5,-1) (M3)
are shown. The Péclet number is Pe = 30. The squirmer with the blue
semisphere is the pusher, and the one with the red semisphere is the
puller.
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