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ABSTRACT
Semiflexible polymers comprised of active Brownian particles (ABPOs) exhibit intriguing activity-driven conformational and dynamical
features. Analytically, the generic properties of ABPOs can be obtained in a mean-field description applying the Gaussian semiflexi-
ble polymer model. In this article, we derive a path integral representation of the stationary-state distribution function of such ABPOs,
based on the stationary-state distribution function of the normal mode amplitudes following from the Langevin equation of motion.
The path integral includes characteristic semiflexible polymer contributions from entropy and bending energy, with activity depen-
dent coefficients, and, in addition, activity-induced torsional and higher order correlations along the polymer contour. Focusing on a
semiflexible polymer approximation, we determine various properties such as the tangent-vector correlation function, effective persis-
tence length, and the mean-square end-to-end distance. The latter reflects the characteristic features of ABPOs, and good quantitative
agreement is obtained with the full solution for larger activities, specifically for flexible polymers. Moreover, the approximation indi-
cates the relevance of torsional and higher order contour correlations for the ABPO conformations. In general, the ABPO path integral
illustrates how colored noise (active fluctuations) affects semiflexible polymer conformations in comparison to white noise thermal
fluctuations.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0081020

I. INTRODUCTION

Living matter is characterized by a multitude of complex
dynamical processes maintaining its out-of-equilibrium nature.1,2

Molecular machines such as (motor) proteins and ribosomes
undergo conformational changes fueled by Adenosine Triphosphate
(ATP), which drive and stir the cell interior.3,4 This triggers a hier-
archy of dynamical processes, movements, and transport, resulting
in a nonequilibrium state of the cell—from the molecular to the
whole-cell level—2 with intriguing collective phenomena emerg-
ing by migration and locomotion also on scales much larger than
individual cells.5–10 The nature of living and active matter systems
implies nonthermal fluctuations, broken detailed balance, and a vio-
lation of the dissipation–fluctuation relation, which renders their
theoretical description particularly challenging.2,10

Filaments and polymers are an integral part of biological
systems, with active processes affecting their conformational and
dynamical properties.10 Forces generated by kinesin motors walking
along microtubule filaments affect the dynamics of the cytoskeletal

network and produce nonequilibrium conformational fluctua-
tions also of actin filaments,11,12 which ultimately contribute to
the organization of the cell interior.10,13–17 In DNA transcrip-
tion, ATPases such as DNA or RNA polymerase (RNAP, DNAP)
move along the DNA, which generates nonthermal fluctuations
for both, RNAP/DNAP and the transcribed DNA.18–20 Various
ATP-dependent processes affect the dynamics of chromosomal
loci21,22 and chromatin.23 Moreover, spatial segregation of active
(euchromatin) and passive (heterochromatin) chromatin has been
found.24–26 These aspects suggest that active processes are essential
for the cell function.27

Various theoretical28–36 and simulation28,37–45 studies have
been performed to elucidate the conformational and dynamical
properties of linear and ring polymers comprised of active Brownian
particles, in the presence and absence of hydrodynamic interactions.
Most remarkable are the strong polymer conformational changes,
with swelling of flexible polymers with increasing activity, shrink-
age of semiflexible polymers at moderate activity, and swelling at
larger activities in an identical manner as flexible polymers.10,31,32
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Dynamically, activity leads to a ballistic polymer center-of-mass
mean-square displacement,10,32 and in particular, in the presence of
hydrodynamic interactions, additionally yields an internal power-
law monomer displacement different from those of a passive
system.40,42

All approaches are based on dynamical equations, typically
Langevin equations for the particle positions and their orientations,
which naturally also yield stationary-state properties. In contrast,
for passive systems, the polymer conformational properties can be
derived from statistical physics only, and the partition function can
be presented in the form of a path integral. Here, the question arises,
whether a similar description of the stationary-state properties of
ABPOs is possible.

In this article, we show that the conformational properties of
ABPOs can indeed be described by a path integral and integration
over configurational space. In particular, we show that the active
polymer can approximately be considered as a semiflexible polymer
for sufficiently large activities. We characterize the polymer con-
formational properties by calculating the tangent-vector correlation
function, the effective persistence length, and the mean-square end-
to-end distance. These properties reflect the characteristic features
of ABPOs in very good quantitative agreement with the full solution
of the Langevin equation, in particular, for flexible polymers and
larger activities for all polymer stiffnesses. Deviations for moder-
ate, stiffness-dependent activities are a consequence of the neglect of
torsional interactions and higher order correlations along the poly-
mer in the semiflexible polymer path integral representation. Here,
our calculations reveal the effect of such higher order correlations
on the ABPO conformational properties, an aspect not considered
so far.

In general, by the path integral representation of ABPOs, estab-
lished concepts for passive polymers can be applied to analyze and
characterize their conformational properties. Particularly, the com-
parison with passive semiflexible polymers emphasizes the effect
of activity on the polymer conformations. Strikingly, it reveals
the impact of colored noise (active fluctuations) on the polymer
conformations in comparison to thermal fluctuations of passive
polymers.

II. ACTIVE BROWNIAN POLYMER MODEL

A. Equation of motion
The active Brownian polymer (ABPO) is modeled in a mean-

field manner as a Gaussian semiflexible polymer—a three dimen-
sional, continuous, differentiable space curve r(s, t) of length L
with the contour coordinate s (−L/2 < s < L/2) evolving in time,
t,46–52—argument by a local active velocity v(s, t).10,31,32,36 The over-
damped Langevin equation of the ABPO in a thermal bath is given
by10,31,32,36

∂

∂t
r(s, t) = v(s, t) +

1
γ
(2νkBT

∂2

∂s2 r(s, t) − ϵkBT
∂4

∂s4 r(s, t) + Γ(s, t))

(1)
with the free-end boundary conditions31,32,50

[2ν
∂

∂s
r(s, t) − ϵ

∂3

∂s3 r(s, t)]
±L/2
= 0, (2)

[2ν0
∂

∂s
r(s, t) ± ϵ

∂2

∂s2 r(s, t)]
±L/2
= 0. (3)

The terms with the second and fourth derivatives in Eq. (1) account
for the conformational entropy and bending energy, respectively.
For the stretching coefficient ν0 and the bending coefficient ϵ, we
set ν0 = 3/4 and ϵ = 3lp/2 = 3/(4p), where lp = 1/(2p) is the persis-
tence length of the passive polymer.52 The stretching coefficient ν
is determined in a mean-field manner by the global constraint of a
finite ABPO contour length,31,52–54

∫

L/2

−L/2
⟨(

∂r(s, t)
∂s

)

2

⟩ds = L. (4)

The thermal force Γ(s, t) is assumed to be stationary, Markovian,
and Gaussian with zero mean and the second moments,

⟨Γα(s, t)Γβ(s
′, t′)⟩ = 2γkBTδαβδ(s − s′)δ(t − t′), (5)

where T is the temperature, kB is the Boltzmann constant, γ is the
translational friction coefficient per length, and α,β ∈ {x, y, z}.

The dynamics of the active velocity v(s, t) is described by an
Ornstein–Uhlenbeck process (AOBP),6,31,55–57 with a vanishing first
moment, ⟨v(s, t)⟩ = 0, and the correlation function (colored noise),

⟨v(s, t) ⋅ v(s′, t′)⟩ = v2
0 le−γR(t−t′)δ(s − s′). (6)

Here, v0 denotes the magnitude of the active velocity, l can be
related to the number of active sites N = L/l along the polymer, and
γR = 2DR in three dimensions, with DR being the rotational diffusion
coefficient.10,31 Hence, Eq. (1) is a stochastic differential equation
of a semiflexible polymer in the presence of white (thermal) and
colored (active) noise.

B. Solution of the equations of motion:
Eigenfunction expansion

The linear equation (1) is easily solved by an eigenfunction
expansion,10,31,32,50

r(s, t) =
∞

∑
n=0

χn(t)φn(s), (7)

in terms of the eigenfunctions φn(s) of the equation

ϵkBT
d4

ds4 φn(s) − 2νkBT
d2

ds2 φn(s) = ξnφn(s). (8)

Explicitly, the eigenfunctions are given by50

φ0 =

√
1
L

, (9)

φn(s) =
√

cn

L
(ζ′n

sinh ζ′ns
cosh ζ′nL/2

+ ζn
sin ζns

cos ζnL/2
), n odd, (10)

φn(s) =
√

cn

L
(ζ′n

cosh ζ′ns
sinh ζ′nL/2

− ζn
cos ζns

sin ζnL/2
), n even, (11)
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with the wave numbers ζn, ζ′n, and the eigenvalues ξn,

ζ′2n − ζ
2
n =

2ν
ϵ

, ξ0 = 0, ξn = kBT(ϵζ4
n + 2νζ2

n). (12)

The wave numbers ζn, ζ′n are specified by the boundary condi-
tions [Eqs. (2) and (3)], and the constants cn are normalization
coefficients.32,50 The eigenfunction φ0 accounts for a polymer’s
translational motion. Note that ξn depend on the stretching coef-
ficient ν, which is a function of activity due to the constraint
(4).31,32,56

Equation (1) yields the equations of motion for the mode
amplitudes χn,

d
dt
χn(t) = −

1
τn
χn(t) + vn(t) +

1
γ
Γn(t), (13)

with the relaxation times

τn =
γ
ξn
=

γ
kBT(ϵζ4

n + 2νζ2
n)

, (14)

and the normal mode amplitudes vn, Γn of the active velocities and
stochastic forces, respectively. The mode amplitude vn(t) satisfies
the equation of motion

d
dt
vn(t) = −γRvn(t) + Ξn(t) (15)

with the correlation functions

⟨Ξn(t) ⋅ Ξm(0)⟩ = 2γRv
2
0 lδnmδ(t − t′) (16)

of the normal mode amplitudes of the Gaussian and Markovian
stochastic process Ξ(s, t) of zero mean.31

The stationary-state solution of Eq. (13) is

χn(t) = e−t/τn
∫

t

−∞

et′/τn(vn(t′) +
1
γ
Γn(t′))dt′, (17)

which yields the stationary-state mean-square average,31,32

⟨χ2
n(t)⟩ =

3kBTτn

γ
+

v2
0 lτ2

n

1 + γRτn
. (18)

C. Stationary-state distribution function
of mode amplitudes

Equations (13) and (15) are coupled Ornstein–Uhlenbeck pro-
cesses with an exact analytical solution in terms of a Gaussian.57,58

Integration over the velocity modes, vn, yields the stationary-state
Gaussian distribution function for the normal mode amplitudes χn,

ψ({χn}) =
∞

∏
n=1
(

3
2π⟨χ2

n⟩
)

3/2

exp(−
3
2

∞

∑
m=1

χ2
m
⟨χ2

m⟩
), (19)

with ⟨χ2
n⟩ of Eq. (18).

III. PATH INTEGRAL REPRESENTATION OF ABPO
A path integral representation of the active Brownian polymer

is obtained by exploiting the eigenvalue equation (8). We focus on
the limit, where the active term with v2

0 dominates the correlation
function of Eq. (18), i.e., we neglect the thermal contribution and use
⟨χ2

n⟩ = v
2
0 lτ2

n/(1 + γRτn). Hence, the term in the exponent of Eq. (19)
becomes

∞

∑
n=1

χ2
n

⟨χ2
n⟩
=

1
v2

0 lγ2

∞

∑
n=1
(ξ2

n + γRγξn)χ2
n. (20)

The two terms on the right-hand side of Eq. (20) can be transformed
into

∞

∑
n=1

ξ2
nχ

2
n = ∫

L/2

−L/2
(Or(s))TOr(s) ds, (21)

∞

∑
n=1

ξnχ2
n = ∫

L/2

−L/2
r(s)TOr(s) ds (22)

by using the orthonormality of the eigenfunctions and the abbrevia-
tion,

O = ϵkBT
d4

ds4 − 2νkBT
d2

ds2 . (23)

Insertion of the operator, partial integration, and exploitation of
the boundary conditions lead to the path integral representation
of the distribution function in terms of the position r(s) (cf. the
Appendix),

ψ({r}) =
1
Z

exp(−
3kBT
v2

0 lγ2 [νγγR∫

L/2

−L/2
(
∂r
∂s
)

2
ds

+
4kBTν2

+ γγRϵ
2 ∫

L/2

−L/2
(
∂2r
∂s2 )

2

ds

+ 2kBTνϵ∫
L/2

−L/2
(
∂3r
∂s3 )

2

ds +
kBTϵ2

2 ∫

L/2

−L/2
(
∂4r
∂s4 )

2

ds

+ ν0(γRγ +
8kBTν2

ϵ
)[(

∂r
∂s
)

2

L/2
+ (

∂r
∂s
)

2

−L/2
]]). (24)

Z = ∫ exp(⋅ ⋅ ⋅ )D3r is the partition function, with the dots repre-
senting the exponent in Eq. (24) and D3r being the integration over
paths.49,59,60 Aside from the characteristic terms of semiflexible poly-
mers (first and second derivatives), Eq. (24) includes higher order
derivatives accounting for torsion (third derivative) and longer
range correlations (fourth derivative) along the polymer contour.
The partition function can be evaluated because of the Gaussian
nature of the integrand, but the derivation of a closed-form expres-
sion based on the path integral is involved. In any case, we can
calculate the partition function via the eigenfunction representa-
tion. Here, we focus on a semiflexible polymer representation of our
active polymer neglecting torsional and higher order correlations,
i.e., a distribution function of the form

ψ({r}) =
1
Z

exp
⎛

⎝
−ν̃∫

L

0
(
∂r
∂s
)

2
ds −

ϵ̃
2∫

L

0
(
∂2r
∂s2 )

2

ds

− ν̃0[(
∂r
∂s
)

2

L
+ (

∂r
∂s
)

2

0
]) (25)
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with the abbreviations

ν̃ =
3kBTνγR

v2
0 lγ

, (26)

ϵ̃ =
3kBT
v2

0 lγ2 (4kBTν2
+ γγRϵ), (27)

ν̃0 =
3kBTν0

v2
0 lγ2 (γγR +

8kBTν2

ϵ
). (28)

The parameter ϵ depends on the flexibility and ν additionally in
a nonlinearly manner on the activity of the ABPO. Note that we
changed the integration interval in Eq. (25) from −L/2 ≤ s ≤ L/2 to
0 ≤ s ≤ L.

IV. GREEN’S FUNCTION
Averages are conveniently calculated via Green’s function

G(r, u, s∣r′, u′, s′), which is the conditional probability distribution

function of the position r = r(s) and derivative u = u(s) = ∂r/∂s
given the values r′ = r(s′), u′ = u(s′). In terms of the path integral,
Green’s function reads

G(r, u, s∣r′, u′, s′) =
1

ZG
∫

r,u

r′ ,u′
exp(−ν̃∫

s

s′
(
∂r
∂s′′
)

2
ds′′

−
ϵ̃
2∫

s

s′
(
∂2r
∂s′′2
)

2

ds′′
⎞

⎠
D3r, (29)

with fixed points r, r′ and “tangents” u, u′. The normalization fac-

tor ZG ensures that G(r, u, s′∣r′, u′, s′) = δ(r − r′)δ(u − u′).49 The
path integral (29) is a Markov process, and Green’s function obeys
the Chapman–Kolmogorov equation.58 Green’s function can be
obtained via a discrete representation of the path integral and inte-
gration or as the solution of the partial differential equation for
G.49,59,60 Explicitly, it is given by (0 < s′ < s < L),

G(r, u, s∣r′, u′, s′) =
1

Zr
G(s − s′)

G(u, s∣u′, s′) exp
⎛
⎜
⎝
−ν̃
[r − r′ − (u + u′)

√
ϵ̃/2ν̃ tanh(

√
ν̃/2ϵ̃(s − s′))]

2

s − s′ −
√

2ϵ̃/ν̃ tanh(
√
ν̃/2ϵ̃(s − s′))

⎞
⎟
⎠

, (30)

with Green’s function for the tangent vectors

G(u, s∣u′, s′) =
1

Zu
G(s − s′)

exp(−
√
ν̃ϵ̃/2

sinh(
√

2ν̃/ϵ̃(s − s′))

× [(u2
+ u′2) cosh(

√
2ν̃/ϵ̃(s − s′)) − 2u ⋅ u′])

(31)

and the normalization factors (ZG = Zr
GZu

G)

Zu
G(s) = (

π sinh(
√

2ν̃/ϵ̃s)
√
ν̃ϵ̃/2

)

3/2

,

Zr
G(s) =

⎛
⎜
⎝

π[s −
√

2ϵ̃/ν̃ tanh(
√
ν̃/2ϵ̃s)]

ν̃

⎞
⎟
⎠

3/2

.

(32)

V. JOINT PROBABILITY DISTRIBUTION
The joint probability distribution function ψ(u, s; u′, s′) for the

tangent vectors u at s and u′ at s′ is calculated by exploiting the
Markov property of Green’s function (30), which yields

ψ(u, s; u′, s′) =
1

Zuu′
∫ e−ν̃0u2

L G(uL, L∣u, s)G(u, s∣u′, s′)

×G(u′, s′∣u0, 0)e−ν̃0u2
0 d3uLd3u0, (33)

where Zuu′ is the normalization factor, uL = u(L), and u0 = u(0).
The exponential functions with ν̃0 account for the distribution of
the “tangent” vectors at the polymer ends [cf. Eqs. (24) and (25)].
Integration yields

ψ(u, s; u′, s′) =
1

Zuu′
exp(−

ϵ̃κ
2 sinh(κ(s − s′))

[
ϕ(L − s′)
ϕ(L − s)

u2

+
ϕ(s)
ϕ(s′)

u′2 − 2u ⋅ u′]) (34)

with the abbreviations κ =
√

2ν̃/ϵ̃,

ϕ(s) = ν̃0 sinh(κs) +
1
2
ϵ̃κ cosh(κs) (35)

and the normalization factor

Zuu′ = (
2 sinh(κ(s − s′))ϕ(L − s)ϕ(s′)

ν̃ϵ̃[(ν̃2
0 + ν̃ϵ̃/2) sinh(κL) + ν̃0ϵ̃κ cosh(κL)]

)

3/2

. (36)

The probability distribution function ψ(u) of the tangent vector is obtained by integration of Eq. (34) over u′ and yields a Gaussian for u(s)
with the mean-square average

⟨u2
(s)⟩ =

3
4ϵ̃κ
[2ν̃0 sinh(κs) + ϵ̃κ cosh(κs)][2ν̃0 sinh(κ(L − s)) + ϵ̃κ cosh(κ(L − s))]

[ν̃2
0 + ν̃ϵ̃/2] sinh(κL) + ϵ̃ν̃0κ cosh(κL)

. (37)
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VI. CONFORMATIONAL PROPERTIES
A. Stretching coefficient

The activity dependence of the stretching coefficient ν is
obtained from the constraint (4). Integration of Eq. (37) over the
polymer contour s yields the equation

3
4ϵ̃κ
[2ν̃0ϵ̃κL + ν̃ϵ̃/κ − 2ν̃2

0/κ] sinh(κL) + [2ν̃2
0L + ν̃ϵ̃L] cosh(κL)

[ν̃2
0 + ν̃ϵ̃/2] sinh(κL) + ϵ̃ν̃0κ cosh(κL)

= L,

(38)
which has to be solved numerically, in general.

Figure 1 displays the normalized stretching coefficient
μ = 2ν/(3p) as a function of activity for various pL. We use the Péclet
number Pe and the ratio Δ to characterize activity, where

Pe =
v0

lDR
, Δ =

DT

l2DR
(39)

with the translational diffusion coefficient DT = kBT/(γl). In the fol-
lowing, we will useΔ = 1/3, corresponding to the ratio of the thermal
diffusion coefficients of a spherical colloid of diameter l in a fluid. In
general, DT and DR can be chosen independently. Stiffness is char-
acterized by the ration L/lp = 2pL of the polymer length and the
persistence length as measured in the passive state (Pe→ 0). Only
data for Pe > 3 are provided because the approximation in Eq. (20)
applies for Pe≫ 1 only.

The stretching coefficient derived from the path integral repre-
sentation agrees well with the exact solution obtained via the solu-
tion of the Langevin equation (1).31 As the exact solution, Eq. (38)
yields the dependence on the Péclet number,

μ =
Pe4/3N
6pLΔ

(40)

FIG. 1. Normalized stretching coefficient (Lagrangian multiplier) μ = 2ν/3p as
a function of the Péclet number Pe for polymers of various stiffnesses with
pL = 103, 102, 10, 1, 10−1, and 10−2 (bottom to top). For the other parameters,
we set N = L/l = 103 and Δ = 1/3. The red curves are obtained from Eq. (38) of
the path integral representation, and the blue curves represent the results obtained
as a sum of the eigenfunctions as described in Ref. 31. The black line indicates
the power-law μ ∼ Pe4/3.

for Pe, μ < ∞ and pL→∞. In the limit Pe→∞ and 0 < pL < ∞, the
analytical approximation of Eq. (38) yields

μ = Pe

¿
Á
ÁÀ N3

54(pL)2Δ2

¿
Á
ÁÀ2pL + 3 + 3/(4pL)

2pL + 1
, (41)

with an additional term (second square root on the right-hand side)
compared to the exact solution.31 Clearly, this term is irrelevant for
flexible polymers, where pL≫ 1, but yields a deviation from the
exact result for pL < 1.

The apparent difference with the exact solution for smaller
Pe ≲ 3 is a consequence of the applied large Pe approximation
(Fig. 1). However, for intermediate Pe, in the crossover regime to
μ ∼ Pe4/3 and in the limit Pe→∞, the neglected torsional term and
the term with the fourth derivative in the path integral yield a visible
contribution.

Figure 1 presents a broad range of Péclet numbers to illus-
trate the asymptomatic behavior for large Pe. For an estimation of
the Péclet number in cellular systems, we consider the action of
ATPases on chromatin motion.17 For such a system, the definition
of Pe changes to Pe = Fl/(kBT), where F is the force exerted by a
molecular motor, l is its step length, and kBT is the thermal energy.
Using F ≈ 10 pN and l ≈ 10 nm yields Pe ≈ 20 at room temperature.
A similar value has been used in Ref. 17. For a (hypothetical) syn-
thetic polymer comprised of freely rotating Janus particles, Eq. (39)
gives the larger value Pe ≈ 102 with the swim velocity v ≈ 5 μm/s,
the diameter l ≈ 5 μm, and the rotational diffusion coefficient
DR ≈ 10−2 s−1 in water at room temperature. Possible restrictions in
the rational diffusion coefficient by bonds would increase the Péclet
number, and not too large velocities are required to achieve even
larger Pe. As shown in Fig. 1 (and the following figures), in the range
of Pe = 101–102, the polymers exhibit already strong activity effects.

B. Mean-square tangent vector
An inextensible polymer contour implies the constraint ∣u(s)∣

= 1 or, under relaxed (mean filed) conditions, the constraint ⟨u2
(s)⟩

= 1.49,59,61 The latter relation is satisfied for the passive Gaussian
semiflexible polymer adopted here for all s (0 ≤ s ≤ L).49 As a conse-
quence, the global constraint (4) captures the inextensibility of the
polymer equivalently to the local constraint.49 However, external
forces or active forces may render the two approaches—local con-
straints vs global constraint—inequivalent,52 and, under the global
constraint, the polymer contour may deform (stretch/compress)
inhomogeneously.

Figure 2 presents the mean-square tangent vector as a function
of the contour coordinate for various Péclet numbers and pL values.
For Pe ≲ 10, ⟨u2

⟩ deviates appreciably from unity for stiffer polymers
(pL = 0.1). Above pL = 1, the deviations are within a few percent
only, aside from strong chain end effects. In general, for Pe > 50, the
deviation from unit is smaller than 5% for all pL, aside from end
effects, with largest deviations for pL ≲ 1 and pL > 10. Independent
of Pe, we find pronounced chain end effects with a severe drop or
increase in the mean-square tangent vector as a consequence of the
applied global constraint. In general, the parameter ν depends on
the position s in the presence of forces.52 Nevertheless, the local con-
straint ⟨u2

⟩ = 1 is surprisingly well satisfied considering the strong
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FIG. 2. Mean-square tangent vector ⟨u2(s)⟩ as a function of the contour coordi-
nate s/L for Pe = 10 (blue) and Pe = 103 (red) and the polymer length to stiffness
ratios pL = 0.1, 1, 5(red), 10, 103 (dark to bright). Curves for pL > 103 deviate only
slightly from those for pL = 103.

polymer conformational changes with increasing activity. The pro-
nounced variations at the polymer ends are of minor importance for
properties on the scale of the whole polymer for most of the Pe and
pL values. The change in ⟨u2

⟩ from values <1 to values >1 reflect
the compression of stiffer polymers and the stretching of flexible
polymers by the activity.

C. Tangent vector correlation function
The tangent vector correlation function ⟨u ⋅ u′⟩ is as follows:

⟨u ⋅ u′⟩ =
3ϕ(L − s)ϕ(s′)

ϵ̃κ[(ν̃2
0 + ν̃ϵ̃/2) sinh(κL) + ν̃0ϵ̃κ cosh(κL)]

(42)

via the joint probability distribution in Eq. (34). This expression
turns into the mean-square tangent vector (37) for s′ = s. Factor-
ing out the exponential with the positive exponent in the hyperbolic
functions, the correlation function can be written as

⟨u ⋅ u′⟩
⟨u2⟩

=
2ν̃0(1 − e−2κs′

) + ϵ̃κ(1 + e−2κs′
)

2ν̃0(1 − e−2κs) + ϵ̃κ(1 + e−2κs)
e−κ∣s−s′ ∣. (43)

For 2κs, 2κs′ ≫ 1 or 2κs, 2κs′ ≪ 1, the normalized correlation func-
tion decays exponentially, and we can introduce the effective
persistence length lep = 1/κ with

κL =

¿
Á
ÁÀ 2 N3

pLμΔ
/

¿
Á
ÁÀ1 +

N3

6(pL)3μ2Δ
, (44)

a function of the Péclet number and polymer stiffness.
The dependence of the effective persistence length on the Péclet

number is displayed in Fig. 3. Evidently, lep/L is significantly smaller
than the unit for pL > 1 (Pe > 10 for pL = 0.1). Using s/L, s′/L < 1,
the relation 2 s/lep, 2 s′/lep ≫ 1 is satisfied for not too small s, s′ and
the correlation decays exponentially, as confirmed by a numerical
evaluation of the tangent vector correlation function. The polymer

FIG. 3. Effective persistence length as a function of the Péclet number for the
polymer stiffnesses pL = 0.1, 1, 10, 102, and 103 (dark to bright). The solid line
indicates the power-law dependence Pe2/3, and the dashed line indicates the
dependence Pe−1.9.

end regimes (s/L ≈ 0, 1) should be considered with care in the cal-
culation of a persistence length, as the mean-square tangent vector
(Fig. 2) deviates considerably from unity.

For flexible polymers (pL ≈ N) and/or large Péclet numbers
(μ≫ 1), the square-root term in the denominator of Eq. (44) is
unity and lep ∼

√μ. Since μ ∼ Pe4/3 for κL≫ 1 (Sec. VI A), the effec-
tive persistence length increases as lep ∼ Pe2/3 with the Péclet number,
i.e., with increasing Pe, the active polymer becomes stiffer (Fig. 3). In
contrast, lep of semiflexible polymers decreases over a certain range of
(small) Pe values with increasing Péclet number. Here, the square-
root term in the denominator of Eq. (44) dominates and lep ∼ 1/√μ,
which for increasing μ yields a decreasing lep.

D. Mean-square end-to-end distance
The polymer mean-square end-to-end distance,

⟨R2
e⟩ = ⟨(r(L) − r(0))2

⟩, can be calculated from the tangent
vector correlation function (42) via

⟨R2
e⟩ = ∫

L

0
∫

L

0
⟨u(s) ⋅ u(s′)⟩dsds′, (45)

which yields (cf. Ref. 52)

⟨R2
e⟩ =

3
2ν̃
(L −

2ν̃0

ν̃
[1 +

ν̃0κ
ν̃

coth(κL/2)]
−1
). (46)

The dependence of ⟨R2
e⟩ on the Péclet number is displayed

in Fig. 4 for various values of pL. Qualitatively, good agreement
is obtained between the path integral mean-square end-to-end dis-
tance and the full solution via the eigenfunction expansion. In partic-
ular, the approach reproduces the shrinkage of ⟨R2

e⟩ of stiff polymers
at small Pe, as well as the swelling of flexible and semiflexible poly-
mers with increasing Pe. Quantitatively, we observe differences in
the crossover regime from shrinkage to swelling. Moreover, the
asymptotic value for Pe→∞ of the path integral approach devi-
ates from the limit ⟨R2

e⟩ = L2
/2 of the eigenfunction approach. All
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FIG. 4. Polymer mean-square end-to-end distance as a function of the Péclet
number. Comparison of the path integral result (red), Eq. (46), with the ⟨R2

e⟩ val-
ues obtained from the solution of the Langevin equation (blue)31 for pL = 10−2,
0.1, 1, 10, 102, and 103 (bright to dark). The solid line indicates the power-law
dependence Pe2/3.

the deviations for Pe ≳ 5 are attributed to the neglected higher order
derivatives in Eq. (25). As for the full solution, the mean-square
end-to-end distance (46) yields

⟨R2
e⟩ =

Pe2

6pLμΔ
(47)

for μ≫ 1 and 1≪ Pe < ∞. With the Pe dependence μ ∼ Pe4/3

(Fig. 1), the mean-square end-to-end increases as ⟨R2
e⟩/L2

∼ Pe2/3

over a certain range of Pe values.
To illustrate the thermal contribution, 3kBTτn/γ, to the mean-

square end-to-end distance, in Fig. 5, we compare the full mean-
square end-to-end distance obtained from the Langevin equation
with the approximation (47). Evidently, the latter relation captures

FIG. 5. Mean-square end-to-end distance obtained from the solution of the
Langevin equation (blue) and via the approximation in Eq. (47) (green) for
pL = 0.1, 1, 10, and 102 (bright to dark).

the Péclet number dependence of ⟨R2
e⟩ over a wide range of Pe values

very well. Note that the ⟨R2
e⟩ curves are calculated with the stretching

coefficient, μ, of the eigenfunction solution (Fig. 1, blue). Only for
Pe ≲ 5, the approximation underestimates the full solution, where
the discrepancy increases with increasing polymer flexibility. Thus,
the mean-square end-to-end distance is solely determined by the
active term in Eq. (18) for Pe ≳ 5.

Since the thermal contribution to ⟨R2
e⟩ shows the dependence

τn ∼ 1/μ(Pe) for Pe≫ 1 [Eq. (14)] and μ increases monotonically
with Pe, the thermal contribution decreases monotonically with
increasing Pe.40 The approximation (47) applies for not too large
Pe values only. The asymptotic limit Pe→∞, μ ∼ Pe2, and ⟨R2

e⟩

assumes a Pe-independent plateau. These considerations emphasize
that the discrepancy between the eigenfunction and path inte-
gral solutions for Pe ≳ 5 (Fig. 4) is solely due to the neglect of
higher order derivatives and not due to the neglect of the thermal
contribution in Eq. (25).

The emergence and influence of torsion on the ABPO proper-
ties have not been investigated so far. However, our path integral
formulation reveals an impact of twist on the ABPO conformations,
specifically for semiflexible and stiff polymers. Moreover, simula-
tion studies of polar active polymers—they are driven by active
forces along the bonds10,62—yield a non-zero torsional angle, which
increases with increasing activity.63

VII. CONCLUSIONS AND OUTLOOK
We have derived a path integral representation for the confor-

mational properties of a semiflexible active Brownian polymer based
on its stationary-state distribution function of the normal mode
amplitudes. The normal mode amplitudes themselves are obtained
as stationary-state solution of the Langevin equation of the ABPO.31

The linearity of the ABPO equations of motion and the Gaussian
nature of the stochastic process (Ornstein–Uhlenbeck process) yield
a Gaussian distribution function of the normal mode amplitudes,
which are transformed into a path integral for the continuous poly-
mer. The latter includes characteristic semiflexible polymer contri-
butions from entropy and bending energy, with activity dependent
coefficients, and, in addition, activity-induced torsional and higher
order correlations along the polymer contour. Neglecting torsional
and higher order correlations, we obtain a path integral reminis-
cent of a semiflexible polymer with activity dependent coefficients.
The comparison of the conformational properties obtained within
the path integral representation with the result of the dynamical
equations of motion yields good qualitative and even quantitative
agreement over a considerable range of Péclet numbers. However,
our calculations reveal the emergence of torsional contributions to
the ABPO conformations, an aspect that needs to be analyzed in
more detail.

Based on path integral representation, established procedures
and approaches can be applied to analyze and characterize the
out-of-equilibrium properties of active Brownian polymers. In par-
ticular, the differences to a strict semiflexible polymer are visible.
Although not all conformational aspects of the ABPO are captured
by the semiflexible polymer approximation, the path integral reveals
that the ABPO conformational properties are determined by corre-
lations of the active velocity, i.e., the colored noise process with the
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correlations (6). This is in contrast to passive polymers, where the
conformations are governed by white noise [Eq. (5)].
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APPENDIX: TRANSFORMATION OF SUM OVER MODES
TO INTEGRAL OVER POSITIONS

We briefly illustrate the steps in the transformation of the sum-
over-modes, Eq. (19), to the path integral representation of Eq. (24).
Using the orthonormality

∫

L/2

−L/2
φn(s)φm(s)ds = δnm (A1)

of the eigenfunctions, the left-hand side of Eq. (22) can be written as

∑
n
ξnχT

n χn = ∫

L/2

−L/2
∑

n
∑
m
ξmχT

n χmφn(s)φm(s)ds

= ∫

L/2

−L/2
(∑

n
χT

nφn(s))(∑
m
ξmχmφm(s))ds

= ∫

L/2

−L/2
rT
(s)O(∑

m
χmφm(s))ds

= ∫

L/2

−L/2
rT
(s)O r(s)ds. (A2)

Insertion of the differential operator (23) yields

∫

L/2

−L/2
rT
(s)(O r(s))ds = kBT∫

L/2

−L/2
rT
(s)(ϵ

∂4

∂s4 − 2ν
∂2

∂s2 )r(s)ds.

(A3)

Considering the term with the second derivative, partial integration
yields

∫

L/2

−L/2
r ⋅

∂2r
∂s2 ds = (r ⋅

∂r
∂s
)

L/2

−L/2
− ∫

L/2

−L/2
(
∂r
∂s
)

2
ds.

Similarly, for the term with the fourth-order derivative, twice partial
integration gives

∫

L/2

−L/2
r ⋅

∂4r
∂s4 ds = (r ⋅

∂3r
∂s3 )

L/2

−L/2
− (

∂r
∂s
⋅
∂2r
∂s2 )

L/2

−L/2

+ ∫

L/2

−L/2
(
∂2r
∂s2 )

2

ds.

Using the boundary conditions [Eqs. (2) and (3)], Eq. (A3) becomes

∫

L/2

−L/2
rT
(ϵ

∂4

∂s4 − 2ν
∂2

∂s2 )rds

= 2ν∫
L/2

−L/2
(
∂r
∂s
)

2
ds + ϵ∫

L/2

−L/2
(
∂2r
∂s2 )

2

ds

+ 2ν0[(
∂r
∂s
)

2

L/2
+ (

∂r
∂s
)

2

−L/2
]. (A4)

Analogously following Eq. (21) and inserting the operator O yield

1
(kBT)2∑

n
ξ2

nχ
T
n χn = 4ν2

∫

L/2

−L/2
(
∂2r
∂s2 )

2

ds − 4νϵ∫
L/2

−L/2

∂2r
∂s2

⋅
∂4r
∂s4 ds + ϵ2

∫

L/2

−L/2
(
∂4r
∂s4 )

2

ds.

Partial integration of the contribution with the product of the second
and fourth derivative yields

1
(kBT)2∑

n
ξ2

nχ
T
n χn = 4ν2

∫

L/2

−L/2
(
∂2r
∂s2 )

2

ds + 4νϵ∫
L/2

−L/2
(
∂3r
∂s3 )

2

ds

+ ϵ2
∫

L/2

−L/2
(
∂4r
∂s4 )

2

ds +
16ν0ν2

ϵ

×

⎡
⎢
⎢
⎢
⎢
⎣

(
∂2r
∂s2 )

2

−L/2
+ (

∂2r
∂s2 )

2

L/2

⎤
⎥
⎥
⎥
⎥
⎦

. (A5)

The combination of Eqs. (19), (20), (A2), (A4), and (A5) yields
Eq. (24).
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