001     907780
005     20230128125811.0
024 7 _ |a 10.1021/acscentsci.2c00013
|2 doi
024 7 _ |a 2374-7943
|2 ISSN
024 7 _ |a 2374-7951
|2 ISSN
024 7 _ |a 2128/31238
|2 Handle
024 7 _ |a altmetric:127388858
|2 altmetric
024 7 _ |a 35647282
|2 pmid
024 7 _ |a WOS:000806002600015
|2 WOS
037 _ _ |a FZJ-2022-02209
082 _ _ |a 540
100 1 _ |a Bhatia, Sanil
|0 0000-0001-6494-7744
|b 0
|e Corresponding author
245 _ _ |a Development of a First-in-Class Small-Molecule Inhibitor of the C-Terminal Hsp90 Dimerization
260 _ _ |a Washington, DC
|c 2022
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674828925_20490
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Heat shock proteins 90 (Hsp90) are promising therapeutic targets due to their involvement in stabilizing several aberrantly expressed oncoproteins. In cancerous cells, Hsp90 expression is elevated, thereby exerting antiapoptotic effects, which is essential for the malignant transformation and tumor progression. Most of the Hsp90 inhibitors (Hsp90i) under investigation target the ATP binding site in the N-terminal domain of Hsp90. However, adverse effects, including induction of the prosurvival resistance mechanism (heat shock response or HSR) and associated dose-limiting toxicity, have so far precluded their clinical approval. In contrast, modulators that interfere with the C-terminal domain (CTD) of Hsp90 do not inflict HSR. Since the CTD dimerization of Hsp90 is essential for its chaperone activity, interfering with the dimerization process by small-molecule protein–protein interaction inhibitors is a promising strategy for anticancer drug research. We have developed a first-in-class small-molecule inhibitor (5b) targeting the Hsp90 CTD dimerization interface, based on a tripyrimidonamide scaffold through structure-based molecular design, chemical synthesis, binding mode model prediction, assessment of the biochemical affinity, and efficacy against therapy-resistant leukemia cells. 5b reduces xenotransplantation of leukemia cells in zebrafish models and induces apoptosis in BCR-ABL1+ (T315I) tyrosine kinase inhibitor-resistant leukemia cells, without inducing HSR.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 1
536 _ _ |a Forschergruppe Gohlke (hkf7_20200501)
|0 G:(DE-Juel1)hkf7_20200501
|c hkf7_20200501
|f Forschergruppe Gohlke
|x 2
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Spanier, Lukas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bickel, David
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dienstbier, Niklas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Woloschin, Vitalij
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Vogt, Melina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pols, Henrik
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lungerich, Beate
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Reiners, Jens
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Aghaallaei, Narges
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Diedrich, Daniela
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Frieg, Benedikt
|0 P:(DE-Juel1)172887
|b 11
|u fzj
700 1 _ |a Schliehe-Diecks, Julian
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Bopp, Bertan
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lang, Franziska
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Gopalswamy, Mohanraj
|0 P:(DE-Juel1)191100
|b 15
|u fzj
700 1 _ |a Loschwitz, Jennifer
|0 P:(DE-Juel1)174397
|b 16
700 1 _ |a Bajohgli, Baubak
|0 0000-0002-7368-7523
|b 17
700 1 _ |a Skokowa, Julia
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Borkhardt, Arndt
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Hauer, Julia
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Hansen, Finn K.
|0 0000-0001-9765-5975
|b 21
700 1 _ |a Smits, Sander H. J.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Jose, Joachim
|0 0000-0002-0666-2676
|b 23
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 24
|e Corresponding author
700 1 _ |a Kurz, Thomas
|0 0000-0002-9474-4224
|b 25
|e Corresponding author
773 _ _ |a 10.1021/acscentsci.2c00013
|g p. acscentsci.2c00013
|0 PERI:(DE-600)2816030-7
|n 5
|p 636–655
|t ACS central science
|v 8
|y 2022
|x 2374-7943
856 4 _ |u https://juser.fz-juelich.de/record/907780/files/acscentsci.2c00013.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/907780/files/development-of-a-first-in-class-small-molecule-inhibitor-of-the-c-terminal-hsp90-dimerization.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907780
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)172887
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)191100
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)174397
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 24
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 2
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CENTRAL SCI : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-07-01T08:27:51Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-07-01T08:27:51Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-07-01T08:27:51Z
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS CENTRAL SCI : 2021
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 2
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21