000907807 001__ 907807
000907807 005__ 20230223091802.0
000907807 0247_ $$2doi$$a10.1002/hbm.25898
000907807 0247_ $$2ISSN$$a1065-9471
000907807 0247_ $$2ISSN$$a1097-0193
000907807 0247_ $$2Handle$$a2128/31715
000907807 0247_ $$2pmid$$a35535616
000907807 0247_ $$2WOS$$aWOS:000792603500001
000907807 037__ $$aFZJ-2022-02226
000907807 041__ $$aEnglish
000907807 082__ $$a610
000907807 1001_ $$0P:(DE-Juel1)185961$$aFrahm, Lennart$$b0$$eCorresponding author$$ufzj
000907807 245__ $$aEvaluation of thresholding methods for activation likelihood estimation meta‐analysis via large‐scale simulations
000907807 260__ $$aNew York, NY$$bWiley-Liss$$c2022
000907807 3367_ $$2DRIVER$$aarticle
000907807 3367_ $$2DataCite$$aOutput Types/Journal article
000907807 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661318197_27640
000907807 3367_ $$2BibTeX$$aARTICLE
000907807 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907807 3367_ $$00$$2EndNote$$aJournal Article
000907807 520__ $$aIn recent neuroimaging studies, threshold-free cluster enhancement (TFCE) gained popularity as a sophisticated thresholding method for statistical inference. It was shown to feature higher sensitivity than the frequently used approach of controlling the cluster-level family-wise error (cFWE) and it does not require setting a cluster-forming threshold at voxel level. Here, we examined the applicability of TFCE to a widely used method for coordinate-based neuroimaging meta-analysis, Activation Likelihood Estimation (ALE), by means of large-scale simulations. We created over 200,000 artificial meta-analysis datasets by independently varying the total number of experiments included and the amount of spatial convergence across experiments. Next, we applied ALE to all datasets and compared the performance of TFCE to both voxel-level and cluster-level FWE correction approaches. All three multiple-comparison correction methods yielded valid results, with only about 5% of the significant clusters being based on spurious convergence, which corresponds to the nominal level the methods were controlling for. On average, TFCE's sensitivity was comparable to that of cFWE correction, but it was slightly worse for a subset of parameter combinations, even after TFCE parameter optimization. cFWE yielded the largest significant clusters, closely followed by TFCE, while voxel-level FWE correction yielded substantially smaller clusters, showcasing its high spatial specificity. Given that TFCE does not outperform the standard cFWE correction but is computationally much more expensive, we conclude that employing TFCE for ALE cannot be recommended to the general user.
000907807 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000907807 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907807 7001_ $$0P:(DE-Juel1)131855$$aCieslik, Edna C.$$b1$$ufzj
000907807 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b2$$ufzj
000907807 7001_ $$0P:(DE-HGF)0$$aSatterthwaite, Theodore D.$$b3
000907807 7001_ $$0P:(DE-HGF)0$$aFox, Peter T.$$b4
000907807 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b5$$ufzj
000907807 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b6$$ufzj
000907807 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.25898$$gp. hbm.25898$$n13$$p3987-3997$$tHuman brain mapping$$v43$$x1065-9471$$y2022
000907807 8564_ $$uhttps://juser.fz-juelich.de/record/907807/files/Human%20Brain%20Mapping%20-%202022%20-%20Frahm%20-%20Evaluation%20of%20thresholding%20methods%20for%20activation%20likelihood%20estimation%20meta%E2%80%90analysis.pdf$$yOpenAccess
000907807 8767_ $$8W-2022-00458-b$$92022-10-14$$a1200185207$$d2022-11-21$$eAPC$$jZahlung erfolgt
000907807 909CO $$ooai:juser.fz-juelich.de:907807$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185961$$aForschungszentrum Jülich$$b0$$kFZJ
000907807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131855$$aForschungszentrum Jülich$$b1$$kFZJ
000907807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b2$$kFZJ
000907807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich$$b5$$kFZJ
000907807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b6$$kFZJ
000907807 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000907807 9141_ $$y2022
000907807 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000907807 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000907807 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000907807 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000907807 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000907807 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907807 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-22$$wger
000907807 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000907807 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000907807 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-27T20:46:01Z
000907807 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-27T20:46:01Z
000907807 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-27T20:46:01Z
000907807 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000907807 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000907807 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-22
000907807 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-22
000907807 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2021$$d2022-11-22
000907807 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-22
000907807 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-22
000907807 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bHUM BRAIN MAPP : 2021$$d2022-11-22
000907807 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907807 920__ $$lyes
000907807 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000907807 9801_ $$aFullTexts
000907807 980__ $$ajournal
000907807 980__ $$aVDB
000907807 980__ $$aUNRESTRICTED
000907807 980__ $$aI:(DE-Juel1)INM-7-20090406
000907807 980__ $$aAPC