001     907807
005     20230223091802.0
024 7 _ |a 10.1002/hbm.25898
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 2128/31715
|2 Handle
024 7 _ |a 35535616
|2 pmid
024 7 _ |a WOS:000792603500001
|2 WOS
037 _ _ |a FZJ-2022-02226
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Frahm, Lennart
|0 P:(DE-Juel1)185961
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Evaluation of thresholding methods for activation likelihood estimation meta‐analysis via large‐scale simulations
260 _ _ |a New York, NY
|c 2022
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661318197_27640
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent neuroimaging studies, threshold-free cluster enhancement (TFCE) gained popularity as a sophisticated thresholding method for statistical inference. It was shown to feature higher sensitivity than the frequently used approach of controlling the cluster-level family-wise error (cFWE) and it does not require setting a cluster-forming threshold at voxel level. Here, we examined the applicability of TFCE to a widely used method for coordinate-based neuroimaging meta-analysis, Activation Likelihood Estimation (ALE), by means of large-scale simulations. We created over 200,000 artificial meta-analysis datasets by independently varying the total number of experiments included and the amount of spatial convergence across experiments. Next, we applied ALE to all datasets and compared the performance of TFCE to both voxel-level and cluster-level FWE correction approaches. All three multiple-comparison correction methods yielded valid results, with only about 5% of the significant clusters being based on spurious convergence, which corresponds to the nominal level the methods were controlling for. On average, TFCE's sensitivity was comparable to that of cFWE correction, but it was slightly worse for a subset of parameter combinations, even after TFCE parameter optimization. cFWE yielded the largest significant clusters, closely followed by TFCE, while voxel-level FWE correction yielded substantially smaller clusters, showcasing its high spatial specificity. Given that TFCE does not outperform the standard cFWE correction but is computationally much more expensive, we conclude that employing TFCE for ALE cannot be recommended to the general user.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cieslik, Edna C.
|0 P:(DE-Juel1)131855
|b 1
|u fzj
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 2
|u fzj
700 1 _ |a Satterthwaite, Theodore D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fox, Peter T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Langner, Robert
|0 P:(DE-Juel1)131693
|b 5
|u fzj
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 6
|u fzj
773 _ _ |a 10.1002/hbm.25898
|g p. hbm.25898
|0 PERI:(DE-600)1492703-2
|n 13
|p 3987-3997
|t Human brain mapping
|v 43
|y 2022
|x 1065-9471
856 4 _ |u https://juser.fz-juelich.de/record/907807/files/Human%20Brain%20Mapping%20-%202022%20-%20Frahm%20-%20Evaluation%20of%20thresholding%20methods%20for%20activation%20likelihood%20estimation%20meta%E2%80%90analysis.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907807
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131855
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-27T20:46:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-27T20:46:01Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-27T20:46:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b HUM BRAIN MAPP : 2021
|d 2022-11-22
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21