000907812 001__ 907812
000907812 005__ 20230123110622.0
000907812 0247_ $$2doi$$a10.1016/j.neuroimage.2022.119321
000907812 0247_ $$2ISSN$$a1053-8119
000907812 0247_ $$2ISSN$$a1095-9572
000907812 0247_ $$2Handle$$a2128/31211
000907812 0247_ $$2altmetric$$aaltmetric:128469167
000907812 0247_ $$2pmid$$apmid:35580807
000907812 0247_ $$2WOS$$aWOS:000807102900001
000907812 037__ $$aFZJ-2022-02229
000907812 082__ $$a610
000907812 1001_ $$0P:(DE-Juel1)179582$$aDomhof, Justin W. M.$$b0$$ufzj
000907812 245__ $$aReliability and subject specificity of personalized whole-brain dynamical models
000907812 260__ $$c2022
000907812 3367_ $$2DRIVER$$aarticle
000907812 3367_ $$2DataCite$$aOutput Types/Journal article
000907812 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673261902_17708
000907812 3367_ $$2BibTeX$$aARTICLE
000907812 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907812 3367_ $$00$$2EndNote$$aJournal Article
000907812 520__ $$aDynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework.Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits.However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC.In this study, we show that the parameters of these models can be fitted with a "poor" to "good" reliability depending on the exact implementation of the modeling paradigm.We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters.In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models.In fact, the most complex neural mass model often yields modeling results with "poor" reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps.Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity.For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70\%, but not vice versa for non-linear models.We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data.In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application.In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.
000907812 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000907812 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907812 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b1$$ufzj
000907812 7001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr V.$$b2$$eCorresponding author
000907812 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2022.119321$$gVol. 257, p. 119321 -$$p119321$$tNeuroImage$$v257$$x1053-8119$$y2022
000907812 8564_ $$uhttps://juser.fz-juelich.de/record/907812/files/Invoice_OAD0000209725.pdf
000907812 8564_ $$uhttps://juser.fz-juelich.de/record/907812/files/1-s2.0-S1053811922004402-main.pdf$$yOpenAccess
000907812 8564_ $$uhttps://juser.fz-juelich.de/record/907812/files/Postprint.pdf$$yOpenAccess
000907812 8767_ $$8OAD0000209725$$92022-05-16$$a1200181133$$d2022-05-18$$eAPC$$jZahlung erfolgt$$zFZJ-2022-02181
000907812 909CO $$ooai:juser.fz-juelich.de:907812$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179582$$aForschungszentrum Jülich$$b0$$kFZJ
000907812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
000907812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b2$$kFZJ
000907812 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000907812 9141_ $$y2022
000907812 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907812 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907812 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000907812 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000907812 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000907812 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000907812 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907812 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000907812 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907812 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000907812 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2021$$d2022-11-12
000907812 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000907812 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000907812 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-27T20:29:23Z
000907812 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-27T20:29:23Z
000907812 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-27T20:29:23Z
000907812 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000907812 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000907812 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000907812 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000907812 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000907812 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000907812 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2021$$d2022-11-12
000907812 920__ $$lyes
000907812 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000907812 980__ $$ajournal
000907812 980__ $$aVDB
000907812 980__ $$aI:(DE-Juel1)INM-7-20090406
000907812 980__ $$aAPC
000907812 980__ $$aUNRESTRICTED
000907812 9801_ $$aAPC
000907812 9801_ $$aFullTexts