001     907812
005     20230123110622.0
024 7 _ |a 10.1016/j.neuroimage.2022.119321
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a 2128/31211
|2 Handle
024 7 _ |a altmetric:128469167
|2 altmetric
024 7 _ |a pmid:35580807
|2 pmid
024 7 _ |a WOS:000807102900001
|2 WOS
037 _ _ |a FZJ-2022-02229
082 _ _ |a 610
100 1 _ |a Domhof, Justin W. M.
|0 P:(DE-Juel1)179582
|b 0
|u fzj
245 _ _ |a Reliability and subject specificity of personalized whole-brain dynamical models
260 _ _ |c 2022
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673261902_17708
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework.Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits.However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC.In this study, we show that the parameters of these models can be fitted with a "poor" to "good" reliability depending on the exact implementation of the modeling paradigm.We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters.In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models.In fact, the most complex neural mass model often yields modeling results with "poor" reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps.Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity.For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70\%, but not vice versa for non-linear models.We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data.In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application.In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 1
|u fzj
700 1 _ |a Popovych, Oleksandr V.
|0 P:(DE-Juel1)131880
|b 2
|e Corresponding author
773 _ _ |a 10.1016/j.neuroimage.2022.119321
|g Vol. 257, p. 119321 -
|0 PERI:(DE-600)1471418-8
|p 119321
|t NeuroImage
|v 257
|y 2022
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/907812/files/Invoice_OAD0000209725.pdf
856 4 _ |u https://juser.fz-juelich.de/record/907812/files/1-s2.0-S1053811922004402-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/907812/files/Postprint.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907812
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179582
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131880
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
914 1 _ |y 2022
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-27T20:29:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-27T20:29:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-27T20:29:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21