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a b s t r a c t 

Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together 

into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these 

relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how 

reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we 

show that the parameters of these models can be fitted with a ”poor ” to ”good ” reliability depending on the exact 

implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model person- 

alization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model 

complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. 

In fact, the most complex neural mass model often yields modeling results with ”poor ” reliability comparable 

to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Sub- 

sequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both 

reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects 

may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa 

for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions 

and show that the parcellation-induced effect is much more pronounced for the modeling results than for the 

empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of 

dynamical whole-brain models and may be relevant for their further development and application. In particular, 

our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected 

with an estimate of the reliability of the results. 
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. Introduction 

The neuroscientific literature generally distinguishes between three

ypes of macroscopic connectivity in the human brain: the structural

SC), functional (FC) and effective connectivity ( Deco et al., 2014a;

obinson, 2012 ). Here, the SC assumes an anatomical viewpoint and

eflects how different parts of the brain are connected via axonal pro-

ections bundled into white matter fibers ( Maier-Hein et al., 2017;

otiropoulos and Zalesky, 2019; Yeh et al., 2021 ). FC, on the other hand,

ses synchronized co-activations as proxies for stable functional con-

ections ( Bolt et al., 2017; Deco et al., 2013; van den Heuvel and Hul-

hoff Pol, 2010 ). Finally, effective connectivity considers the causality

r the directionality of the information flow between various parts of the

rain ( Friston, 2011; Gilson et al., 2016; Robinson et al., 2014; Valdes-

osa et al., 2011 ). Studies have shown that SC and FC exhibit a complex

elationship, which is demonstrated by the relatively low correlations
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etween them, and many approaches have been proposed to infer the

C from the SC or vice versa ( Honey et al., 2009; Larson-Prior et al.,

013; Saggio et al., 2016; Suárez et al., 2020; Woolrich and Stephan,

013 ). 

Dynamical whole-brain models are one of the main methodolo-

ies used to link SC and FC together into one comprehensive frame-

ork ( Breakspear, 2017; Deco et al., 2011; Popovych et al., 2019; Sanz-

eon et al., 2015; Suárez et al., 2020 ). These models explain an addi-

ional amount of variance beyond a direct correlation between SC and

C, and have been used to study the dynamical properties of the resting-

tate human brain ( Deco et al., 2017; Ghosh et al., 2008; Honey et al.,

009 ). Moreover, the models can be employed to study the mechanisms

nderlying neurobiological phenomena and neural disorders at a per-

onalized level and suggest an approach for hypothesis testing in sil-

co ( Deco et al., 2019; Deco and Kringelbach, 2014; Hahn et al., 2019;

irsa et al., 2017; Ritter et al., 2013; Zimmermann et al., 2018b ). 
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Studies have assessed how varying preprocessings of magnetic res-

nance imaging (MRI) data influence the results of dynamical whole-

rain models. They showed that the models are sensitive to variations in

he pipelines reconstructing the SC and the FC from diffusion-weighted

RI (dwMRI) and resting-state functional MRI (fMRI) images, respec-

ively ( Aquino et al., 2022; Jung et al., 2021 ), and how the model fit-

ing may depend on the properties of the empirical data used for model

erivation and validation ( Domhof et al., 2021b; Popovych et al., 2021 ).

evertheless, the methodological aspects of the (test-retest) reliability

nd the subject specificity of the modeling results and their relation to

he empirical data have not been extensively investigated so far. In con-

rast, the reliability of the FC derived from fMRI data, which is used

or model validation, has been scrutinized in many studies over a pe-

iod longer than a decade ( Birn et al., 2013; Noble et al., 2019; 2017;

annunzi et al., 2017; Shehzad et al., 2009; Van Dijk et al., 2010 ). Its

ubject specificity reflected by, for example, fingerprinting analysis has

eceived much attention as well ( Amico et al., 2018; Finn et al., 2015;

eña Gómez et al., 2018; Li et al., 2021; Sarar et al., 2021; Waller et al.,

017 ). Also the subject specificity of the empirical structure-function re-

ationship has been considered in the literature ( Messé, 2020; Zimmer-

ann et al., 2018a ). Hence, comprehensive assessments of the reliability

nd the subject specificity of the modeling results and their relation with

he empirical data are due. 

This study therefore critically assesses the reliability and subject

pecificity of the results of the model validation and their relations with

he empirical connectomes across a wide variety of conditions for model

onstruction such as model definition and wielded parcellation. In short,

t demonstrates that the results of the model fitting may be more reli-

ble and subject specific than the empirical data. However, our results

lso show that this finding highly depends on the modeling conditions.

n fact, for some of the tested circumstances we found a reliability and

ubject specificity that are substantially lower for the modeling results

han for the empirical data. Moreover, we explicitly show that the mod-

ls can integrate various types of subject-specific information extracted

rom empirical data into their output. This makes our study relevant for

pplication, especially, given the current focus on the involvement of

ynamical whole-brain models in clinical investigations, for example,

n the framework of precision medicine. 

. Materials and methods 

In the current study, we assessed the reliability and the subject speci-

city of the fits of the dynamical whole-brain models to the empirical

C. We first constructed such models on the basis of the empirical SC de-

ived from dwMRI data ( Fig. 1 ). Subsequently, we independently fitted

hem to different realizations of the empirical FC (the FC derived from

esting-state fMRI data) of individual subjects by optimizing the (global)

odel parameters through a grid search paradigm ( Fig. 1 ). By doing so,

e obtained the optimal model parameters that were used by the mod-

ls to generate the associated simulated FCs that provided the best fits of

he model to these separate realizations of empirical FC. 

We subsequently calculated the intraclass correlation (ICC) of the

ndividual optimal model parameters as characterizations of their relia-

ility. Additionally, we calculated the same quantity for the individual

undirected) edges of the empirical and fitted simulated FCs, and in-

pected the distribution of these ICCs across connections to examine the

eliabilities of those connectomes. We also computed the single-modal

onnectome correlations , where different realizations of the empirical and

he fitted simulated FCs were separately compared with each other for

he same subject (within-subject) or different subjects (between-subject)

o determine how variable the connectivity patterns are for the same

nd different subjects ( Fig. 1 , blue arrows). Furthermore, we determined

he within- and between-subject, cross-modal connectome correlations

o study how the different types of connectivity related to one another.

ere we named the correlations calculated between the empirical SC

nd both types of FC (empirical and simulated) the structure-function cor-
2 
elations ( Fig. 1 , red arrows), and those computed between the empirical

nd the simulated FC the model-fit correlations ( Fig. 1 , brown arrows).

inally, we considered all values of similarity (Pearson correlation) be-

ween the empirical and simulated FC established at the model valida-

ion by the parameter grid search, which are referred to as a similarity

ap. We examined how the similarity maps relate to one another within

nd between subjects. 

We repeated our calculations using 8 distinct parcellations for the re-

onstruction of the empirical SC and FC from the MRI data to determine

hether a change of brain atlas could critically alter the conclusions. In

ddition, we repeated our computations for 6 distinct dynamical whole-

rain model implementations to investigate whether varying model per-

onalization and model complexity may yield qualitatively different re-

ults. 

Below we describe the wielded procedures in detail. The code

sed for the simulation of the brain network dynamics, the anal-

sis and the visualization can be found here: https://jugit.fz-

uelich.de/inm7/public/specificity-modeling . 

.1. Empirical connectomes 

In this work, we used the empirical connectomes that we have al-

eady published elsewhere ( Domhof et al., 2021a ). This repository con-

ains the empirical SC and FC matrices of 200 healthy, unrelated subjects

96 males, 104 females, aged 28.5 ± 3.5 years) from the Human Connec-

ome Project (HCP) S1200 release dataset ( Van Essen et al., 2013; 2012 ).

he local ethics committee of the HCP approved the study, and the in-

ormed consent of all subjects was collected. The connectomes were re-

onstructed for 19 different parcellation schemes, where the original

arcellation images were first modified to increase the comparability of

esults across brain atlases. In particular, the modifications ensured the

mages only included cortical parcels and were sampled to the MNI152

on-linear template space ( Grabner et al., 2006 ). 

We used the empirical connectomes of 8 representative parcellations

ut of the available 19 brain parcellations in order to put more em-

hasis on varying the parcellation method rather than the granularity.

able 1 displays the final selection of parcellations. Below we provide

 brief explanation on the derivation of the empirical SC and FC from

he dwMRI and fMRI data, respectively. For a detailed description of the

onnectome data, we refer to the data descriptor included in the reposi-

ory ( Domhof et al., 2021a ) and to the associated paper ( Domhof et al.,

021b ). 

.1.1. Empirical structural connectivity 

The reconstruction of the empirical SC matrices from dwMRI data

as carried out by a workflow developed in-house ( Jung et al.,

021 ). The pipeline can be regarded as a wrapper around functions

ncluded in the software packages of ANTs ( Tustison et al., 2010 ),

reeSurfer ( Dale et al., 1999 ), FSL ( Jenkinson et al., 2012 ) and MR-

rix3 ( Tournier et al., 2019 ), and is publicly available ( https://github.

om/inm7/vbc _ dwmri ). The result of the reconstruction consisted of the

mpirical SC matrix with the number of streamlines between all pairs of

rain regions and the empirical path length (PL) matrix, which included

he average lengths of those streamlines. For the details of the recon-

truction process, we refer to the above repository hosting the workflow,

o the data descriptor of the data repository ( Domhof et al., 2021a ) and

o the associated paper ( Domhof et al., 2021b ). 

In addition to the subjects’ own (personalized) empirical SC and PL

atrices, we also derived their grand-averages per parcellation, which

s a common practice in modeling studies ( Aquino et al., 2022; Cabral

t al., 2011; Deco et al., 2018b; Donnelly-Kehoe et al., 2019; Iravani

t al., 2021; Messé et al., 2014; 2015 ). However, by a straightforward

veraging, the unconnected brain regions may bias the grand-averaged

ath lengths to lower values. Instead, we considered each edge of the

mpirical SC and PL matrices separately, and determined the medians

https://jugit.fz-juelich.de/inm7/public/specificity-modeling
https://github.com/inm7/vbc_dwmri
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Fig. 1. Schematic illustration of the methodology used in this study. The empirical structural connectivity (SC) and the empirical functional connectivity (FC) were 

calculated from dwMRI and resting-state fMRI data, respectively. Dynamical whole-brain models were used to sample the simulated FC matrices that replicated each 

individual empirical FC as close as possible for every fMRI session by using the optimal model parameter configuration 𝑝 𝑠𝑢𝑏𝑗𝑒𝑐𝑡,𝑠𝑒𝑠𝑠𝑖𝑜𝑛 . This particular configuration was 

obtained by validating the model (fitting simulated FC to empirical FC) using a grid search in the parameter space. Subsequently, the upper triangles of the empirical 

SC, empirical FC and the corresponding fitted simulated FC matrices were correlated between different resting-state fMRI sessions or subjects to determine their 

similarities. Here, a distinction was made between three types of correlations. (1) The correlations evaluated between the same type of FC were named single-modal 

correlations (blue arrows). (2) Cross-modal structure-function correlations (red arrows) were calculated between the empirical SC and the empirical or simulated 

FC. (3) Cross-modal correlations between the empirical and simulated FC were termed model-fit correlations (brown arrows). All sessions participate in within- 

and between-subject comparisons, but arrows in the figure are only fully shown for session 2 of subject 1 (center column of simulated and empirical FC). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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f the connected edges across subjects. This variation from a straight-

orward averaging does not yield qualitatively different empirical SC

atrices, but yields a more accurate estimation of the grand-averaged

hysical distance the signals have to travel; see supplementary Fig. S1

or illustration. 

.1.2. Empirical functional connectivity 

The empirical FC matrices were calculated from the ICA-

IX preprocessed resting-state fMRI data as included in the HCP

ataset ( Griffanti et al., 2014 ). First, the mean intensity of the resting-

tate blood-oxygen-level-dependent (BOLD) signal was calculated across

ll voxels of a given brain region included in the considered parcella-

ion, which resulted in one BOLD signal time series for each parcel. The

esulting BOLD signals were recently published in a separate dataset as

ell ( Domhof et al., 2022 ). Subsequently, the time series were linearly

etrended and z-scored. Eventually, the empirical FC was derived from

he time series by calculating the Pearson correlation coefficients across

he time series for all pairs of brain regions. 

For all considered subjects, the HCP dataset provided 4 resting-state

MRI sessions (left-to-right and right-to-left phase encoding directions

canned on 2 days) comprising 1200 volumes each (TR = 720 ms). We

hus calculated 4 different realizations of the empirical FC per subject.

hese separate instances of the empirical FC for every individual subject

nabled us to estimate the reliability of the empirical FC and hence that

f the corresponding fitted simulated FC and the respective fitted model

arameters as well. 

.2. Simulated functional connectivity 

After the acquisition of the empirical connectomes, the simulated

C matrices were generated by dynamical whole-brain models. In these

odels, the brain was considered to be a network of nodes correspond-

ng to the brain regions included in a particular parcellation. The mean-

eld activities of the brain regions were subsequently described by mod-

ls for local dynamics that interact with one another according to the

onnectivity profile prescribed by the empirical SC. Here, the empirical

C and PL matrices were used to determine the strengths of the network
3 
onnections and their associated time delays of signal propagation, re-

pectively. 

We performed our simulations for 6 different dynamical whole-brain

odel implementations to study how the distinct facets of model person-

lization and model complexity affect the results. The influence of model

ersonalization was studied by considering multiple versions of the Ku-

amoto model of coupled phase oscillators ( Kuramoto, 1984 ). In partic-

lar, the model could be constructed either on the basis of the grand-

veraged or the personalized empirical SC, and could be simulated us-

ng either group-averaged or subject-specific region-specific oscillation

requencies; see below. Taken together, we considered the Kuramoto

odel 

1) using averaged empirical SCs and averaged frequencies, 

2) using personalized empirical SCs and averaged frequencies, 

3) using averaged empirical SCs and personalized frequencies and 

4) using personalized empirical SCs and personalized frequencies. 

The first and the last modeling conditions define the least and the

ost personalized models considered, respectively. 

The influence of model complexity was studied using three differ-

nt models with similar personalizations (personalized SC). As the least

omplex model, we employed (5) a fully linear model. In addition,

e used the results of the Kuramoto model that was simulated using

he group-averaged frequency profiles (case (2) above) as a moderately

omplex model. Furthermore, we used (6) a Wilson-Cowan neural mass

odel ( Wilson and Cowan, 1972 ), which has the most complex model

escription and implementation among all models wielded in this study.

s mentioned above, these models were all constructed on the basis of

he personalized empirical SC and PL matrices, but there were no other

ersonalized data included in them. 

The non-linear models have two free parameters: the global cou-

ling 𝐺 and the global delay 𝜏; see below. We simulated the models,

hich yielded the activity time series of all 𝑁 brain regions (network

odes), for broad ranges of these parameters sampled from a dense grid

n the ( 𝐺, 𝜏) -parameter space. Subsequently, we derived the simulated

C from the sampled time series via the same procedure that we wielded

o construct the empirical FC from the empirical BOLD signals. Con-
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  
ersely, the considered linear model had an analytical solution in which

he global coupling is the only (relevant) free parameter ( Saggio et al.,

016 ). Hence, we determined the simulated FC of the linear model via

hat solution for a broad range of global coupling values. 

The correspondence between the empirical and the simulated FC

atrices was then quantified by comparing both matrices through the

earson correlation coefficient. Hence, we determined the similarity be-

ween the empirical and simulated FC as a function of the model param-

ters 

( 𝐺, 𝜏) = corr [ 𝐅𝐂 𝑒𝑚𝑝. , 𝐅𝐂 𝑠𝑖𝑚. ( 𝐺, 𝜏)] . (1)

ere, 𝐅𝐂 𝑒𝑚𝑝. and 𝐅𝐂 𝑠𝑖𝑚. ( 𝐺, 𝜏) are vectors containing the upper triangu-

ar elements of the empirical FC and the simulated FC, respectively. In

he case of the linear model, the delay parameter 𝜏 was dropped from

q. (1) . The function 𝜓( 𝐺, 𝜏) is henceforth also referred to as the simi-

arity mapping mentioned above. 

For every individual realization of the empirical FC, we selected the

arameter setting and associated simulated FC that provided the best

t of the model with that particular empirical FC ( Fig. 1 ). In other

ords, for the four realizations of the empirical FC of every subject

four resting-state fMRI sessions per HCP subject), we acquired the four

imulated FCs and the accompanying optimal model parameter settings

hat resulted in the highest value of the similarity 𝜓( 𝐺, 𝜏) . The actual

aximum value of Eq. (1) is subsequently referred to as the goodness-of-

t . The selected optimal model parameter configurations and the corre-

ponding fitted simulated FC matrices were subjected to further analyses

ogether with the empirical connectomes. Below we describe the mod-

ls used in this study in more detail and provide an explanation on their

mplementation and simulation. 

.2.1. Linear model 

As a linear model, we used the well-known Ornstein-Uhlenbeck

odel approximating the diffusion of noise over the anatomical struc-

ure ( Galán, 2008 ). Saggio et al. (2016) demonstrated that this model

as an analytical solution, as it gives rise to the covariance matrix 𝐊 via

he equation 

 = − 

𝜎2 
𝐿 

2 

(
− 𝐈 + 𝐺 ⋅ 𝐒𝐂 

)−1 
. (2)

ere, 𝜎𝐿 is the intensity of the noise, 𝐺 is the global coupling parameter

nd 𝐈 is the identity matrix. Additionally, 𝐒𝐂 is the personalized em-

irical SC matrix normalized by the maximum of its eigenvalues. This

ormalization makes the global coupling parameter range more com-

arable across subjects and parcellations as it ensures that 𝐺 = 1 coin-

ides with the critical coupling; for 𝐺 ≥ 1 the solution loses its stabil-

ty ( Saggio et al., 2016 ). The derived covariance matrix was converted

o a (functional connectivity) correlation matrix by using the definition

f the Pearson correlation coefficient 𝜌𝑋,𝑌 = cov 𝑋,𝑌 ∕ 
(
𝜎𝑋 𝜎𝑌 

)
. Evidently,

he noise parameter 𝜎𝐿 then becomes irrelevant, and hence the global

oupling parameter 𝐺 remains the only free parameter. We determined

he simulated FC for a broad range of values for this parameter to max-

mize the fit between the simulated and the empirical data as given by

q. (1) (without delay parameter); see below for details on this varia-

ion. 

.2.2. Kuramoto phase oscillator model 

The Kuramoto model approximated the phase dynamics of the mean-

eld activity of brain region 𝑖 ∈ {1 , 2 , … , 𝑁 } ( 𝑁 being the number of

rain regions in a particular brain atlas), where the corresponding phase

 𝑖 ( 𝑡 ) was governed by the differential equation 

̇  𝑖 ( 𝑡 ) = 2 𝜋𝑓 𝑖 + 

𝑁 ∑
𝑗=1 

𝐶 𝑖𝑗 sin ( 𝜑 𝑗 ( 𝑡 − 𝜏𝑖𝑗 ) − 𝜑 𝑖 ( 𝑡 )) + 𝜎𝑝 𝜈𝑖 ( 𝑡 ) . (3)

ere, 𝑓 𝑖 is a region-specific natural frequency, and 𝜈𝑖 ( 𝑡 ) is zero-mean

aussian white noise with an intensity 𝜎𝑝 = 0 . 17 . In addition, the in-

ividual coupling strengths and delays were characterized by 𝐶 𝑖𝑗 and
4 
𝑖𝑗 , respectively. They were determined from the personalized or grand-

veraged empirical SC and PL matrices: 

 𝑖𝑗 = 

{ 

0 if 𝑖 = 𝑗 

𝐺 ⋅
SC 𝑖𝑗 

𝑁⟨𝐒𝐂 ⟩ otherwise 
and 𝜏𝑖𝑗 = 

{ 

0 if 𝑖 = 𝑗 

𝜏 ⋅
PL 𝑖𝑗 ⟨𝐏𝐋 ⟩ otherwise 

, (4)

here ⟨⋅⟩ returns the mean over all the elements in the matrix, and 𝐺

nd 𝜏 are the free parameters of the global coupling and delay scaling

he individual coupling strengths and delays, respectively. The normal-

zations of the empirical SC and PL matrices by their mean values en-

ured that the coupling and delay parameter values were within similar

anges across subjects and parcellations. Other studies used a similar

pproach ( Deco et al., 2019; 2017 ). 

In our study, 𝜑 𝑖 ( 𝑡 ) directly modeled the ultra-slow phase dynamics of

he BOLD signals, which is similar to the paradigm described by Ponce-

lvarez et al. (2015) but different from Messé et al. (2014) . The signal

os ( 𝜑 𝑖 ( 𝑡 )) then was considered as a proxy for the simulated BOLD sig-

als, and hence used to construct the simulated FC. We determined the

imulated FC for a broad range of the parameters 𝐺 and 𝜏, which are

ampled on a dense grid in the parameter space, to maximize the fit

etween the simulated and the empirical data; see below for details on

his variation. 

The oscillation frequencies 𝑓 𝑖 were determined via spectral density

stimations calculated from the empirical BOLD time series. To better

stimate the frequency spectra of a given subject, we first concatenated

he four z-scored BOLD signals of the individual fMRI data acquisitions.

he concatenated signals were analyzed using Welchs method ( welch
unction in the SciPy module; Virtanen et al. (2020) ), where we used

 Hamming window function of 1024 time points and 95% overlap be-

ween segments (972 time points). We then used the peak frequencies

ithin the [0.01, 0.10] Hz frequency range; see supplementary Fig. S2

or the distributions of the frequencies across all regions and subjects

hat were obtained by following this procedure for each individual par-

ellation. We added Gaussian white noise with zero mean and 0.002 Hz

tandard deviation to make the peak frequencies more heterogeneous

nd to avoid duplicate frequencies due to discretization of the frequency

alues. Following this approach, a vector of frequencies was obtained

or each subject separately reflecting the peak BOLD frequencies of the

individual brain regions. Two considered versions of the phase os-

illator model used these subject-specific frequencies. We also repeated

ur calculations while using the same group-averaged, region-specific

requencies for all subjects. These frequencies were calculated as the

edian frequencies of the brain regions across subjects and correspond

o two other considered versions of the phase oscillator model. 

.2.3. Neural mass model 

We used a neural mass model similar to the one used by

eco et al. (2009) , which was an adaptation of the model described

y Wilson and Cowan (1972) . The activity of brain region 𝑖 was mod-

led by pooling the activities of the excitatory and inhibitory neurons in

hat region together into the variables 𝐸 𝑖 ( 𝑡 ) and 𝐼 𝑖 ( 𝑡 ) , respectively. The

emporal dynamics of these activities were governed by the equations 

𝐸 𝐸̇ 𝑖 ( 𝑡 ) = − 𝐸 𝑖 ( 𝑡 ) + 𝜅 

( 

𝑁 ∑
𝑗=1 

𝐶 𝑖𝑗 𝐸 𝑗 ( 𝑡 − 𝜏𝑖𝑗 ) − 𝑐 𝐸𝐼 𝐼 𝑖 ( 𝑡 ) + 𝐼 𝑏 

) 

+ 𝜎𝑛 𝜈𝑖 ( 𝑡 ) and (5)

𝐼 𝐼̇ 𝑖 ( 𝑡 ) = − 𝐼 𝑖 ( 𝑡 ) + 𝜅 

(
𝑐 IE 𝐸 𝑖 ( 𝑡 ) 

)
+ 𝜎𝑛 𝜈𝑖 ( 𝑡 ) , (6) 

here 𝜇𝐸 = 𝜇𝐼 = 20 ms represented the decay time constants of the exci-

atory and inhibitory activity, respectively. The same independent Gaus-

ian white noise with a mean of zero and an intensity of 𝜎𝑛 = 0 . 002 was

eceived by both neuronal populations. 𝑐 𝐸𝐼 = 1 . 5 and 𝑐 𝐼𝐸 = 0 . 6 scaled

he inhibition of the excitatory neurons by the inhibitory population and

he excitation of the inhibitory neurons by the excitatory pool, respec-

ively. Parameter 𝜅 = (1 + exp ( 𝜆𝛾))∕ exp ( 𝜆𝛾) scaled the sigmoid function

( 𝑥 ) = 

1 
1 + exp (− 𝜆( 𝑥 − 𝛾)) 

− 

1 
1 + exp ( 𝜆𝛾) 

(7)
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o that 𝜅( 𝑥 ) = 1 as 𝑥 → ∞. Here, 𝜆 = 20 . 0 and 𝛾 = 0 . 3 were the param-

ters determining the width and the position of the inflexion point of

( 𝑥 ) , respectively. Finally, 𝐼 𝑏 = 0 . 10 was a constant external input arriv-

ng at the excitatory population, and 𝐶 𝑖𝑗 and 𝜏𝑖𝑗 were the individual cou-

ling strengths and delays, respectively. Different from the Kuramoto

odel ( Eq. 4 ), they were only derived from the personalized (hence not

rand-averaged) empirical SC and PL matrices via 

 𝑖𝑗 = 

{ 

𝑐 𝐸𝐸 if 𝑖 = 𝑗 

𝐺 ⋅
SC 𝑖𝑗 

𝑁⟨𝐒𝐂 ⟩ otherwise 
and 𝜏𝑖𝑗 = 

{ 

0 if 𝑖 = 𝑗 

𝜏 ⋅
PL 𝑖𝑗 ⟨𝐏𝐋 ⟩ otherwise 

. 

(8) 

n this equation, the parameter 𝑐 𝐸𝐸 = 1 . 0 regulated the self-excitation of

he excitatory neurons, and 𝐺 and 𝜏 are the global coupling and delay

arameters, respectively. These were considered as the free parameters

f the model and required optimization; see below. 

The model exhibited limit-cycle oscillatory behavior in the alpha fre-

uency band when the brain regions were coupled in a network by a

ufficiently large coupling parameter 𝐺 > 0 , and remained at a low ac-

ivity state when the network was disconnected ( 𝐺 = 0 ). The modeled

scillations had alpha-band frequencies on purpose: Alpha oscillations

ave been associated with BOLD responses ( Mayhew et al., 2013 ), and

hey dominate in human resting-state EEG ( Fraga González et al., 2018;

pitoni et al., 2013 ). 

The activities of the two neuron populations were sampled by simu-

ating the model. However, as the fluctuations in the modeled neuronal

ctivity took place on a much shorter time scale ( ∼10 Hz) than the BOLD

ynamics ( < 0.1 Hz), the simulated time series cannot be compared di-

ectly with the empirical BOLD signals. Instead, a Balloon-Windkessel

odel ( Friston et al., 2003 ) was employed to convert the activities of

he excitatory population to BOLD-like responses which were then used

o construct the simulated FC matrix. 

.2.4. Model implementation and simulation 

The models were implemented using the Python (Python Soft-

are Foundation, https://www.python.org ) and C++ (Standard C++

oundation, https://isocpp.org ) programming languages, where we also

ade use of the SciPy ( Virtanen et al., 2020 ) and NumPy ( van der Walt

t al., 2011 ) modules for Python. The extensive computations re-

uired to evaluate the model simulations and their subsequent analy-

es were performed on the JURECA high-performance computing clus-

er ( Jülich Supercomputing Centre, 2018 ). The temporal integrations of

he phase oscillator, neural mass and Balloon-Windkessel models were

mplemented according to Heun’s method. 

The linear model only required optimization of the global coupling

arameter. This parameter was varied using the collection of global cou-

ling values described by 

 ∈ {0 . 0005 , 0 . 0010 , 0 . 0015 , … , 1 . 0000} . (9)

ecause the model had an analytical solution, the correlation matrix

ould directly be calculated from the empirical SC matrix using Eq. (2) ,

nd no computationally intensive model simulations were needed for

his model. 

We maximized the correspondence between the empirical and sim-

lated FC for both the phase oscillator and the neural mass models by

valuating a dense grid search of 64 × 48 different parameter values

or the global coupling 𝐺 and delay 𝜏, respectively. The phase oscilla-

or model was simulated for the collection of global parameter values

escribed by 

 ∈ {0 . 000 , 0 . 015 , 0 . 030 , … , 0 . 945} and (10)

∈ {0 s , 1 s , 2 s , … , 47 s} . (11)

e simulated 70 minutes of phase dynamics in steps of 60 ms, and the

rst 10 minutes were disregarded as transient. When considering the

eural mass model, the dense grid corresponded to all combinations
5 
etween the collections of global coupling and delay values described

y 

 ∈ {0 . 000 , 0 . 018 , 0 . 036 , … , 1 . 134} and (12)

∈ {0 . 0 ms , 1 . 5 ms , 3 . 0 ms , … , 70 . 5 ms } . (13)

lso the configuration of the temporal integration was different for this

odel. For every parameter setting, 510 s of network activity were sim-

lated in steps of 2 ms, and we omitted the first 150 s. These diverging

imulation conditions were adapted to the alpha-frequency and ultra-

low time scales of the neural mass and the phase oscillator model, re-

pectively. 

The simulations above were performed individually for each com-

ination of the 200 subjects, the 8 parcellations listed in Table 1 and

he 6 model implementations; see above. These simulation conditions

ccumulated to over 15M model simulations used for the model valida-

ion (fitting) against empirical data on a dense parameter grid. Out of

hese simulations several optimal parameter settings of the closest corre-

pondence between the simulated and empirical data were selected for

urther analysis of reliability and subject specificity: 4 (fMRI sessions)

8 (parcellations) × 6 (models) × 200 (subjects) = 38,400 parameter

oints and the respective simulated FCs generated by the models for

hese parameters. 

.3. Reliability and subject specificity 

As mentioned above, for every parcellation we acquired the empiri-

al SC and FC of 𝑆 = 200 individuals, where 𝑀 = 4 different realizations

f the empirical FC were available for each subject. Furthermore, after

he simulations of a given model we additionally had to our disposal

he 200 × 4 = 800 optimal model parameter configurations and the as-

ociated simulated FC matrices that provided the best replications of

he individual empirical FC matrices. We subsequently performed ad-

itional analyses to evaluate the reliability and the subject specificity

f the empirical data and the modeling results. We performed the anal-

ses independently for each combination of the 8 parcellations listed

n Table 1 and the 6 model implementations described in ”Simulated

unctional connectivity ” to estimate their influence on the results. 

.3.1. Intraclass correlation 

We first used the intraclass correlation (ICC) to characterize the reli-

bility of the model parameters of the global coupling and delay as well

s the connectomes. In the latter case, the ICCs were calculated for the

eights (correlation coefficients) of every 𝑁( 𝑁 − 1)∕2 undirected edges

f the functional connectomes (empirical and simulated). The calculated

CC reflects the between-subject variance of these quantities relative to

he total variance (between- and within-subject), and was given by the

ollowing expression ( Chen et al., 2018; Liljequist et al., 2019; Noble

t al., 2019; Shrout and Fleiss, 1979 ): 

𝐶𝐶 = 

𝜎2 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 

𝜎2 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 

+ 𝜎2 
𝜖

. (14)

ere, 𝜎2 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 

is the variance of the considered quantity (parameter or

onnectome edge weight) that is related to the variance among the sub-

ects, and 𝜎2 
𝜖

is the residual variance induced by the different fMRI ac-

uisitions; see ”Empirical functional connectivity ”. Such an implementa-

ion of the ICC has been recommended for the case when no convincing

rgument can be made that the residual noise contains additional con-

istent effects ( Chen et al., 2018; Noble et al., 2019 ). We wielded the

quations proposed by Liljequist et al. (2019) in order to calculate the

CC directly from the data. 

.3.2. Connectome correlations 

We also examined the single- and cross-modal connectome corre-

ations within and between subjects. Here, we first vectorized the off-

iagonal upper triangles of the individual connectivity matrices corre-

ponding to all subjects and realizations (according to the different fMRI

https://www.python.org
https://isocpp.org
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Table 1 

Names and abbreviations of the brain parcellations used in this study together with the number of cortical parcels and associated 

publications. The top and bottom blocks correspond to parcellations derived using data reflecting structural and functional brain 

organization, respectively. 

Name (abbreviation) Parcels References 

Desikan-Killiany (DK) 70 ( Desikan et al., 2006 ) 

von Economo-Koskinas (EK) 86 ( von Economo and Koskinas, 1925; Scholtens et al., 2018 ) 

AAL (version 2) (AAL) 92 ( Rolls et al., 2015; Tzourio-Mazoyer et al., 2002 ) 

Harvard-Oxford (HO) 96 ( Desikan et al., 2006; Frazier et al., 2005; Goldstein et al., 2007; Makris et al., 2006 ) 

Shen 2013 (Shen) 79 ( Shen et al., 2013 ) 

Schaefer (Sch.) 100 ( Schaefer et al., 2018 ) 

MIST (MIST) 103 ( Urchs et al., 2019 ) 

Craddock (CD) 108 ( Craddock et al., 2012 ) 

Table 2 

Number of distinct values comprising each type of connectome correlation for 

𝑆 subjects that each have 𝑀 distinct empirical FC realizations. 

Between-subject Within-subject 

Single-modal 𝑆 ⋅ ( 𝑆 − 1) ⋅𝑀 

2 ∕2 𝑆 ⋅𝑀 ⋅ ( 𝑀 − 1)∕2 
Structure-function 𝑆 ⋅ ( 𝑆 − 1) ⋅𝑀 𝑆 ⋅𝑀
Model-fit 𝑆 ⋅ ( 𝑆 − 1) ⋅𝑀 

2 𝑆 ⋅𝑀 ⋅ ( 𝑀 − 1) 
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essions) of the FC. Subsequently, we calculated the Pearson correlation

oefficients between the resulting vectors, where we distinguished be-

ween three types of correlations ( Fig. 1 ). The first type is the single-

odal correlations comprising the correlations between FCs of the same

odality, i.e. empirical FC vs. empirical FC or simulated FC vs. simu-

ated FC ( Fig. 1 , blue arrows). The second type is the structure-function

orrelations , where the cross-modal correlations of the empirical SC with

he empirical or the simulated FC were calculated ( Fig. 1 , red arrows).

hen a model was constructed on the basis of a grand-averaged SC,

he structure-function correlations nevertheless involved the correla-

ions between the empirical or simulated FC and the personalized SC

atrix of the subject to compare with the personalized simulations. The

hird type is the model-fit correlations consisting of the correlations be-

ween the empirical and the simulated FC ( Fig. 1 , brown arrows). The

alculated correlations quantified the extent to which the connectomes

f the same or different modalities had similar patterns for the same or

ifferent subjects. 

On top of these three different types of correlations, we distinguished

etween within- and between-subject correlations. Here, the between-

ubject correlations included all correlations calculated between two dif-

erent subjects ( Fig. 1 ). In addition, the within-subject correlations in-

luded the correlations computed between the connectomes of the same

ubject ( Fig. 1 ). However, the correlations calculated for the same sub-

ect and the same FC realization (fMRI session) equal one in the case

f the single-modal correlations, and they correspond to the goodness-

f-fit values for the model-fit correlations which means that they are

aximized and may thus bias the results; see the section ”Simulated

unctional connectivity ” above. They were therefore omitted from the

nalyses. Table 2 clarifies how many distinct values each type of correla-

ion comprised. The within- and between-subject correlations were used

o subsequently characterize the reliability and the subject specificity of

he (cross-modal) connectome correlations. 

Within-subject correlations 

The models were fitted to the empirical data by maximizing the sim-

larity between the connectivity patterns of the empirical and simulated

C ( Eq. 1 ). We therefore investigated the reliability of the empirical

nd simulated FCs, that is, the reproducibility of the connectivity pat-

erns for the same subject. The approach based on the calculation of the

CC ( Eq. 14 ) quantified the reliability of each individual FC edge in iso-

ation, but did not reflect whether the entire patterns of the functional

onnections were congruent. Such a reliability of the connectome pat-

erns was characterized in this study by the within-subject single-modal
6 
onnectome correlations ( Fig. 1 ). For the empirical FC, these correlation

oefficients reflected how similar the connectivity patterns were to one

nother when the fMRI data used for their construction were sampled for

he same subject but on different days or with different phase encodings.

nalogously, for the simulated FC, these correlations characterized the

eplicability of the simulated connectome under (potential) variations

f the empirical FC. By comparing the replicability of the empirical and

imulated FCs, we may evaluate whether the considered simulation con-

ition (model, parcellation, etc.) led to an intra-subject variability of the

imulated FC that is either enhanced or reduced relative to that of the

mpirical FC. 

Specificity index 

As mentioned above, the within-subject, single-modal correlations

haracterized whether model fits are realized through converging con-

ectivity patterns of simulated FC. However, these patterns may be more

imilar in general, that is, also across different subjects. We therefore

alculated the specificity index 𝑆𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 , where the mean between-

ubject correlation 𝐶𝑜𝑟𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 was subtracted from the mean within-

ubject correlation 𝐶𝑜𝑟𝑟 𝑤𝑖𝑡ℎ𝑖𝑛 

𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 = 𝐶𝑜𝑟𝑟 𝑤𝑖𝑡ℎ𝑖𝑛 − 𝐶𝑜𝑟𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 , (15)

hich is similar to the approach of Amico et al. (2018) and

immermann et al. (2018a) . The specificity index reflects whether con-

ectomes are indeed reproduced better (more similar to each other)

ithin than between subjects and can be used to quantify the subject

pecificity. In practice, it fluctuates around zero when the considered

ype of correlation is not subject specific, and is (significantly) larger

han zero when it is subject specific. 

To assess the variations in this specificity index, we bootstrapped

oth mean correlations 50,000 times. Here, one bootstrap involved the

esampling of the vectors containing all within- and between-subject

orrelations with replacement and the subsequent calculation of the

eans from the resampled vectors. The specificity index was then cal-

ulated for each bootstrap so that its 95% confidence interval could be

onstructed. If the lower bound of this interval was larger than zero, the

ithin-subject correlations were significantly larger than the between-

ubject ones, and the considered relation was considered significantly

ubject specific. We performed this analysis separately for the single-

odal, structure-function and model-fit correlations. 

Connectome fingerprinting 

We also adapted the fingerprinting analysis from Finn et al. (2015) to

rovide an additional measure for the subject specificity (or subject

dentifiability). The rationale behind this analysis is that a connectome

s subject specific if a single subject can be identified from the full cohort

n the basis of the connectome (cross-modal) correlations. For one par-

icular connectivity matrix, we first evaluated either the single-modal,

tructure-function or model-fit correlations. Subsequently, we deter-

ined whether the maximum of these correlations involved a within-

ubject or a between-subject correlation, which implied a correct and

alse identification of the subject, respectively. By repeating this proce-

ure for all connectivity matrices of that modality, we could determine

he portion of correct identifications or fingerprinting accuracy . In addi-
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ion to the fingerprinting accuracy, we calculated the fingerprinting con-

dence . Here, we first determined which subject provided the next high-

st correlation coefficient for each identification attempt. Subsequently,

e subtracted these correlation coefficients from the maxima. Finally,

e calculated the fingerprinting confidence by averaging these differ-

nces across all identification attempts. The fingerprinting confidence

hus characterizes how dissimilar the next closest connectomes are to

he identified connectivity matrices. In other words, larger fingerprint-

ng confidences indicate facilitation of (correct) subject identification. 

When using the structure-function correlations, a subject could be

dentified by the strongest correspondence between a given (empirical

r simulated) FC and all empirical SC with known subjects. However, the

nalysis could also be performed using the opposite directionality, i.e.

omparing one empirical SC with the empirical or simulated FC matrices

f all subjects. Analogously, model-fit correlations were used to identify

ubjects by correlating one empirical FC with all simulated FC or by

orrelating one simulated FC with all empirical FC. 

.3.3. Inter- and intra-individual correspondences of the similarity maps 

We also investigated how the similarity maps ( Eq. 1 ) calculated be-

ween the empirical and simulated FC during the parameter grid search

ay relate to one another within and between subjects. In other words,

e investigated how strongly these mappings change across subjects and

cross different empirical FC realizations of the same subject. For this

nalysis, we simply calculated the within- and between-subject correla-

ions of these maps across all tested parameter settings, and inspected

heir distributions. Furthermore, we calculated the specificity indices

nd fingerprinting accuracies corresponding to these correlations anal-

gous to the single-modal connectome correlations; see above. 

. Results 

In this study, we used the empirical SC and FC matrices of 200

ealthy subjects that were constructed on the basis of the 8 parcella-

ions listed in Table 1 . The empirical SCs were then used to construct

ynamical whole-brain models that were based on the 6 distinct model

mplementations described in ”Simulated functional connectivity ” (Ma-

erials and Methods). We optimized the free model parameters so that

he similarity between the simulated FC and the empirical FC ( Eq. 1 ) was

aximized. Examples of this similarity as a function of the model pa-

ameters are shown in supplementary Figs. S3-S10, which are examples

f similarity maps. These similarity maps provide information that may

elp the interpretation of our other findings; see below. For instance,

he maps can have multiple regions of high similarity within the pa-

ameter space, in particular, when the neural mass model is considered.

he latter indicates that the global optimum may be unstable, which

ould considerably impact the reliability of the fit of the model to the

mpirical FC. 

This maximization procedure was performed individually for each

ombination of subject, empirical FC (4 realizations per subject), model

mplementation and parcellation. The corresponding goodness-of-fit

alues are shown in supplementary Fig. S11 for every combination of

arcellation and model individually. In addition, the distributions of the

ptimal model parameter settings are shown in supplementary Figs. S12-

19. Subsequently, we investigated the reliability and the subject speci-

city of the empirical data and the modeling results by performing the

nalyses described in ”Reliability and subject specificity ” in Materials

nd Methods. 

.1. Reliability of model parameters 

We first investigated the reliability of the optimal model parame-

ers by examining the distributions of their absolute differences between

ifferent subjects (inter-subject) and between different empirical FC re-

lizations of the same subject (intra-subject). These distributions often
7 
ppeared to be shifted closer to zero when the differences were calcu-

ated within subjects than between subjects ( Fig. 2 A-B; Fig. 3 A-B). This

ight be an initial indication that the parameter variability between

ubjects is larger than the one within subjects. We further quantified

his observation by computing the ICCs ( Eq. 14 ) reflecting the variance

etween subjects relative to the total variance of the fitted model param-

ters. The results showed that the reliability of the coupling and delay

arameters could range from ”poor ” to ”good ” depending on the atlas

nd model implementation ( Fig. 2 C-D; Fig. 3 C-D). 

We draw a specific attention to the positive influence of model per-

onalization on the reliability of the fitted model parameters: Simulat-

ng the phase oscillator model using subject-specific frequency profiles

ielded higher reliability than using group-averaged frequency profiles

ractically irrespective of whether the group-averaged or personalized

C was used ( Fig. 2 C-D, green vs. red and orange). However, when con-

idering the phase oscillator model simulated using group-averaged fre-

uencies, the model parameters were also fitted with higher reliability

hen the personalized instead of the group-averaged SCs were used for

odel construction ( Fig. 2 C-D, dark vs. light green). Hence, model per-

onalization appears to promote the reliability of the model fit to the

mpirical data. 

More complex models seemed to yield a reliability of the model pa-

ameters that was less variant across parcellations, and higher model

omplexity was not immediately more reliable at the same level of per-

onalization ( Fig. 3 C-D). In addition, the linear model fitted the coupling

arameter with higher reliability than the non-linear models in most

ases ( Fig. 3 C-D). We however verified whether this could be explained

y the absence of the signal latency in the network of the linear model.

ence, we considered the non-linear models with zero global delay 𝜏 = 0
n Eq. (4) and Eq. (8) . Subsequently, we determined the optimal cou-

ling parameter values under this constraint and calculated their ICCs.

he results of this investigation confirmed that model complexity did not

xert an influence on the reliability of the coupling parameter in isola-

ion that was consistent across parcellations (supplementary Fig. S20).

ence, the model complexity per se does not seem to systematically in-

uence the reliability of the fitted model parameters. 

We checked whether our results critically depended on the choice

f the intraclass correlation for the characterization of the reliability of

he optimal model parameters. For this investigation, we calculated the

non-parametric) test-retest Spearman correlation coefficient of the op-

imal model parameters. The results showed a strong covariation across

arcellations and model implementations (supplementary Fig. S21; see

gure caption for specifics), which indicated that our results did not

ualitatively depend on the intraclass correlation as the reliability mea-

ure. 

Taken together, these findings demonstrate that whole-brain dynam-

cal models can be fitted to the empirical FC with a ”poor ” to ”good ”

eliability depending on the implementation of the modeling paradigm.

urthermore, we explicitly demonstrated the positive influence of the

odel personalization on the reliability of the fitted model parameters.

oreover, higher model complexity reduces the parcellation-induced

ariations in the reliability of the optimal model parameters, but it can-

ot credibly be associated with systematic tendencies (enhancement or

eduction) of the parameters’ reliability. 

.2. Reliability of functional connectivity edges 

We also examined the reliability of the empirical and the simu-

ated FC. First, we calculated the ICCs of all empirical and simulated

C edges (individual functional connections between brain regions) and

nspected their distributions. The ICCs of the empirical functional con-

ections remained approximately at the same ( ”fair ”) level across par-

ellations ( Fig. 2 E, gray). In contrast, the edge reliability of the simu-

ated functional connectomes varied considerably across parcellations,

nd ranged from ”poor ” to ”good ” ( Fig. 2 E; Fig. 3 E). These findings

ndicate that the reliability of the empirical FC is rather stable across
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Fig. 2. Reliability of modeling results for varying personalization of the phase oscillator model. (A-B) Absolute differences (diffs.) of (A) the optimal coupling 

parameters and (B) the optimal delay parameters for the AAL atlas, which is also highlighted in yellow in panels C to E. The extent of the model personalization as 

given by the combinations of the subject-specific or group-averaged natural frequencies (freqs.) and SC is reflected by color as indicated in the legend. Left and right 

boxes of the same color in the plots correspond to inter- and intra-individual differences per model implementation, respectively. The differences were normalized 

using the maximum across all (inter- and intra-subject) parameter differences per model. (C-D) Intraclass correlations (ICCs; Eq. 14 ) of (C) the coupling parameters 

and (D) the delay parameters for all the atlases considered in this study ( Table 1 ). The labels ”poor ”, ”fair ”, ”good ” and ”excellent ” correspond to those proposed by 

Cicchetti and Sparrow (1981) . The vertical dashed black lines separate the brain atlases constructed on the basis of structural data (left blocks) from those based on 

functional data (right blocks). (E) Distributions of the ICCs of individual functional connections, edges of the empirical (gray) and simulated functional connectome 

for all the atlases considered in this study. Plus and minus signs at the top of the plot signify significantly increased and decreased ICC distributions for the respective 

simulated FC with respect to the one for the empirical FC, respectively ( 𝑝 < 0 . 05 , two-sided Wilcoxon paired signed-rank test, Bonferroni corrected). (F) Scatter plot 

of the intraclass correlations (ICCs) calculated from and averaged across simulated FC edges (simulated ICC, vertical axes) and their predicted values obtained from 

a linear regression with the ICCs of the model parameters (predicted ICC, horizontal axes). The plotted symbols represent parcellations and models as indicated in 

the legend. The dashed black line represents 𝑥 = 𝑦 for comparison. (G) Regression coefficients corresponding to the results shown in panel F. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

8 
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Fig. 3. Reliability of modeling results for varying model complexity with similar model personalization. The model implementations (2), (5) and (6) are considered; 

see ”Simulated functional connectivity ” in Materials and Methods. Here (5) the linear model (blue) corresponds to a low complexity, (2) the phase oscillator model 

(green) to a moderate complexity and (6) the neural mass model (purple) to a high complexity. (A-B) Absolute differences (diffs.) of (A) the optimal coupling 

parameters and (B) the optimal delay parameters for the AAL atlas, which is also highlighted in yellow in panels C to E. Left and right boxes of the same color in 

the plots correspond to inter- and intra-individual differences per model implementation, respectively. The differences were normalized using the maximum across 

all (inter- and intra-subject) parameter differences per model. The results of the delay parameter are not shown for the linear model as this model did not include 

this parameter ( Eq. 2 ). (C-D) Intraclass correlations (ICCs; Eq. 14 ) of (C) the coupling parameters and (D) the delay parameters for all the atlases considered in this 

study ( Table 1 ). The labels ”poor ”, ”fair ”, ”good ” and ”excellent ” correspond to those proposed by Cicchetti and Sparrow (1981) . The vertical dashed black lines 

separate the brain atlases constructed on the basis of structural data (left blocks) from those based on functional data (right blocks). (E) Distributions of the ICCs 

of the empirical (gray) and simulated functional connectome edges for all the atlases considered in this study. Plus and minus signs at the top of the plot signify 

significantly increased and decreased ICC distributions for the respective simulated FC with respect to the one for the empirical FC, respectively ( 𝑝 < 0 . 05 , two-sided 

Wilcoxon paired signed-rank test, Bonferroni corrected). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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arcellations, while that of the simulated FC is more sensitive to the

tilized brain parcellations. 

Additionally, we found that the conclusions derived for the reliabil-

ty of the fitted model parameters ( Fig. 2 C-D; Fig. 3 C-D) can also be

onfirmed for the FC edges. Indeed, model personalization often led to
9 
n increase in the reliability of the connectome edges ( Fig. 2 E). The sim-

lated FCs of the phase oscillator model using subject-specific regional

requencies clearly exceeded the empirical FC in terms of edge reliability

or all considered structurally-derived atlases irrespective of the person-

lization of the empirical SC, and reached the ”good ” level ( Fig. 2 E,
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ed and orange). We regressed the ICCs of the optimal model parame-

ers with the mean ICCs of all simulated FC edges and found that this

inear regression could explain 78% of the variance for the phase oscil-

ator model ( Fig. 2 F). The regression coefficients demonstrated a high

ontribution of the global coupling to the reliability of the simulated

C edges as compared to the optimal delay parameter ( Fig. 2 G). More-

ver, the positive intercept of the regression also indicated that the re-

iability of the simulated FC edges was enhanced by the personalized

hase oscillator model as compared to that of the optimal model pa-

ameters ( Fig. 2 G). 

In addition, as for the reliability of the optimal model parameters,

e again observed that enhanced model complexity (e.g., for the neural

ass model) led to a reliability of the simulated FC edges that varied

ess across parcellations ( Fig. 3 E). On the other hand, the reliability of

he simulated FC generated by the linear model varied considerably and

ignificantly exceeded that of the empirical FC for the Desikan-Killiany,

on Economo-Koskinas and AAL atlases ( Fig. 3 E). We also compared

he reliability (ICC values) of the optimal model parameters and the

imulated FC edges of the models in Fig. 3 by linear regression and

ound no consistent, strong dependencies across models (not shown). 

In sum, the variation of the reliability of the simulated FC edges with

espect to the extent of model personalization and the brain parcella-

ion well agrees with that of the optimal model parameters ( Fig. 2 F).

vidently, the observed relationship between these two types of model

eliability implies that they exhibit similar variations across model per-

onalization, where an enhancement of the latter led to an improvement

f the reliability of the simulated FC, possibly outperforming that of the

mpirical FC. Furthermore, higher model complexity has a positive ef-

ect on the consistency of the reliability of the simulated FC across par-

ellations, but it may not contribute to an enhancement of the reliability

f individual FC edges, and a simple linear model sometimes performed

etter ( Fig. 3 E). 

We also checked whether the different ICCs ( Fig. 2 C-E; Fig. 3 C-E)

ould be related to the goodness-of-fits of the model to the empirical

ata. With regard to the reliability of the optimal model parameters,

he tested regressions varied considerably across models in terms of the

elationship (positive vs. negative) as well as variance explained (sup-

lementary Fig. S22A-G). Hence, the goodness-of-fit is not a good pre-

ictor for the reliability of the model parameters when considering a

articular modeling condition (parcellation and model implementation)

t random. Additionally, the edge-wise reliability of the simulated FC

xhibited a positive correlation with the quality of the model fit for all

onsidered models, though also with varying fractions of explained vari-

nce (supplementary Fig. S22H-K). 

.3. Reliability and subject specificity of functional connectivity patterns 

Several modeling conditions yielded simulated FCs with edges’ relia-

ility being lower than for the empirical FC ( Fig. 2 E; Fig. 3 E). We there-

ore investigated whether the whole connectivity patterns of the simu-

ated FCs were nevertheless similar given that they were fitted to differ-

nt empirical FCs of the same subject. For this purpose, we evaluated

he within-subject, single-modal connectome correlations ( Fig. 1 , blue

rrows). A considerable number of the modeling conditions and subjects

ielded simulated FC matrices that had strongly diverging connectiv-

ty motifs, which is reflected by low intra-subject correlations between

imulated FCs compared to the empirical FCs ( Fig. 4 A-B). In particular,

ncreased model complexity led to more dissimilar simulated FCs for

ost parcellations, especially, for the functionally-derived parcellations,

here strong bimodalities were elicited in the within-subject, single-

odal correlation distributions ( Fig. 4 B). Enhancing the model person-

lization could reduce or smooth these bimodalities ( Fig. 4 A). Hence,

he fit of the model to the empirical data could on average enhance the

ithin-subject variability of the empirical FC depending on the partic-

lar combination of model implementation and parcellation ( Fig. 4 A-B,

inus signs on top of the plots). 
10 
We also checked whether the within-subject, single-modal correla-

ions could be related to the goodness-of-fit of the model to the empirical

ata. Here, we found strong relationships between these two quantities

or the non-linear models (supplementary Fig. S22M-O), but not for the

inear model (supplementary Fig. S22L). This indicates that the FC pat-

erns simulated by non-linear models can exhibit higher within-subject

imilarity when they are fitted better to the empirical FC, but also that

uch a relationship is not evident for the linear model. 

For most modeling conditions, we nonetheless observed that the sim-

lated FC matrices had connectivity patterns that were significantly

ore similar to one another than those of the empirical FC ( Fig. 4 A-B,

lus signs on top of the plots). We investigated whether these enhance-

ents of the within-subject, single-modal correlations were realized by

 general increase in the similarity of the connectivity patterns, that is,

oth within and between subjects. We therefore calculated the (single-

odal) specificity indices ( Eq. 15 ) and fingerprinting accuracies to de-

ermine the gain of the within- relative to the between-subject, single-

odal correlations. We observed that enhanced model personalization

nduced a clear increase in the specificity index and the fingerprint-

ng accuracy, where both these specificity measures could exceed those

f the empirical FC ( Fig. 4 C-E). Fingerprinting confidences were also

ncreased for stronger model personalization and apparently exceeded

hose of the empirical FC (supplementary Fig. S23A), which resulted

n a precise and robust subject identification. On the other hand, the

east personalized model with the averaged frequencies and SC exhib-

ted an extremely low subject specificity, fingerprinting accuracy and

onfidence ( Fig. 4 C-D and supplementary Fig. S23A, dark green) at a

elatively high reliability as given by the intra-subject correlation of

imulated connectomes ( Fig. 4 A, dark green). 

Conversely, varying the model complexity did not result in differ-

nces of the specificity indices that were consistent across parcella-

ions ( Fig. 4 C, blue, light green and purple). The same observation held

or the fingerprinting accuracies of the non-linear models, but not for

hose of the linear model, which were enhanced relative to the non-

inear models of the same personalization and could exceed those of the

mpirical FC in some cases ( Fig. 4 E). Interestingly, the fingerprinting

onfidences of the linear model were systematically much lower than

hose for the neuronal mass model and in many cases also lower than

or the empirical FC (supplementary Fig. S24A). Therefore, subject iden-

ification by a simple linear model is less erroneous but also less robust

han by more complex non-linear models. Hence, model personalization

but not model complexity) had a positive effect on both single-modal

ubject specificity measures (specificity index and fingerprinting accu-

acy) that was consistent across parcellations. 

In sum, most of the model implementations yielded within-subject,

ingle-modal correlations of the simulated FC that were significantly

nhanced relative to the empirical FC. However, these significant en-

ancements actually reflected a general increase in both the within-

nd between-subject single-modal correlations such that the specificity

ndex remained comparable with that of the empirical data. This is in

articular true for the linear and non-linear models with a low and mod-

rate extent of personalization ( Fig. 4 ). Only an enhanced model person-

lization can lead to much improvement of both the subject specificity

nd the subject identifiability of the simulated FC as a modeling re-

ult ( Fig. 4 ). 

.4. Subject specificity of cross-modal connectome correlations 

So far we observed that dynamical whole-brain models produce

imulated FCs with a particular subject specificity. We subsequently

nvestigated the extent to which these subject-specific connectivity

atterns agree with those of the empirical SC and FC by determin-

ng the specificity indices and fingerprinting accuracies corresponding

o the structure-function and model-fit correlations ( Fig. 1 , red and

rown arrows). We observed that the empirical structure-function re-

ationship was only significantly subject specific for the functionally-
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Fig. 4. Impact of the brain atlas, model personalization and model complexity on the reliability and subject specificity of the connectivity patterns of the empirical 

(gray) and simulated FC. (A-B) Distributions of the within-subject, single-modal correlations (corrs.) as a reliability measure of the empirical and simulated FC 

patterns for the various parcellations considered in this study ( Table 1 ) and for varying levels of (A) model personalization and (B) model complexity. The extent of 

model personalization as given by the combinations of the subject-specific or group-averaged natural frequencies (freqs.) and SC is indicated in the legend shown in 

the lower left corner of the plot. Analogously, the level of model complexity as reflected by the linear (least complex), phase oscillator (moderately complex) and 

neural mass (most complex) models with similar personalization levels is indicated in the legend shown in the lower right corner. The vertical dashed black lines 

separate the brain atlases constructed on the basis of structural data (left blocks) from those based on functional data (right blocks). Plus and minus signs at the 

top of the plots indicate significantly increased and decreased within-subject correlation distributions for the respective simulated FC with respect to the one for the 

empirical FC (gray; panel B), respectively ( 𝑝 < 0 . 05 , two-sided Wilcoxon paired signed-rank test, Bonferroni corrected). (C) Specificity indices ( Eq. 15 ) calculated 

from the single-modal correlations of the empirical FC and the simulated FC. The symbols and shaded areas mark the medians and the (Bonferroni corrected) 95% 

confidence intervals across the 50,000 bootstrapped specificity index estimations, respectively. (D-E) Fingerprinting accuracy when identifying individual subjects by 

comparing one of their empirical (simulated) FCs against all other empirical (simulated) FCs for varying levels of (D) model personalization and (E) model complexity. 
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erived atlases, although being very small ( Fig. 5 D, gray). Model per-

onalization through the use of the personalized SC yielded simu-

ated FCs that had structure-function specificity indices significantly

igher than zero for all functionally-derived parcellations as well as

or some of the structurally-derived atlases ( Fig. 5 A, light green and

range). Conversely, deriving the models from a grand-average SC re-
11 
ulted in structure-function specificity indices indistinguishable from

ero ( Fig. 5 A, dark green and red). This finding indicated that models

onstructed on the basis of a personalized SC can embed subject-specific

spects from these structural connectomes into the simulated FC that in

act was fitted to the empirical FC. The fingerprinting accuracies further

upported this claim ( Fig. 5 B-C). We also observed that the magnitude
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Fig. 5. Impact of the brain atlas, model personalization and model complexity on the subject specificity of the structure-function relationships being the correlations 

between the empirical SC and the empirical and simulated FC. (A) Specificity indices ( Eq. 15 ) of the cross-modal correlations of the empirical SC with the simulated 

FC for the parcellations considered in this study; see Table 1 . The extent of model personalization as given by the combinations of the subject-specific or group- 

averaged natural frequencies (freqs.) and SC is indicated in the legend (bottom left). The vertical dashed black line separates the brain atlases constructed on the 

basis of structural data (left block) from those based on functional data (right block). The symbols and error bars mark the medians and the (Bonferroni corrected) 

95% confidence intervals across the 50,000 bootstrapped specificity index estimations, respectively. Asterisks indicate whether the lower bounds of these confidence 

intervals are higher than zero. (B-C) Fingerprinting accuracies determined by (B) identification of one simulated FC from all empirical SC based on the largest 

correlation between them and (C) by identification of one empirical SC from all simulated FC of the same modality for the parcellations considered in this study. 

(D-F) Same as panels A to C, but for varying levels of model complexity as reflected by the linear (least complex), phase oscillator (moderately complex) and neural 

mass (most complex) models with similar personalization levels and indicated in the legend shown in the lower right corner. The results for empirical FCs are also 

shown (gray). 
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f the structure-function specificity indices were much lower than for

he single-modal case ( Fig. 4 C vs. Fig. 5 A,D). 

Model personalization through the use of subject-specific frequency

rofiles induced a negative effect on the subject specificity of the

tructure-function relationship ( Fig. 5 A-C, orange vs. light green), which

s very different from the single-modal FC correlations ( Fig. 4 ). Model

omplexity did not seem to exert a clear effect on the structure-function
12 
ubject specificity when considering the non-linear models ( Fig. 5 D-F).

n addition, the fingerprinting accuracies hint towards a particular direc-

ionality of the structure-function fingerprinting concept when consid-

ring the non-linear models: The identification of the simulated FC from

he empirical SC ( Fig. 5 B,E) resulted in much higher accuracies than the

nverted case ( Fig. 5 C,F). Simultaneously, the fingerprinting confidences

ere mostly lower for the former than for the latter case (supplemen-
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ary Fig. S23B-C and Fig. S24B-C). Interestingly, the subject specificity

ith which the simulated FCs incorporate the empirical SC patterns is

arger for the functionally- than for the structurally-derived parcella-

ions ( Fig. 5 ). 

The latter observation regarding the impact of parcellations was also

rue for the specificity indices and fingerprinting accuracies of the other

onsidered models, in particular, the linear model that exhibited en-

anced specificity relative to those of the non-linear models ( Fig. 5 D-F,

lue). However, there appeared to be a less pronounced directionality

ith respect to the identification of individual subjects for the linear

odel. In this modeling case, the simulated FC can be identified from

mpirical SC, and also empirical SC can be identified from the simulated

C with high accuracy ( Fig. 5 E-F, blue). Such a simple model thus es-

ablished very strong connections between empirical SC and simulated

C such that the connectome identification in both directions becomes

qually possible. 

Subsequently, we performed the same analyses for the model-fit cor-

elations ( Fig. 1 , brown arrows). Even though the specificity indices of

hese correlations were significantly larger than zero for all tested mod-

ling conditions (supplementary Fig. S25A), the values of the specificity

ndices and the fingerprinting accuracies determined from the model-fit

orrelations were relatively low (supplementary Fig. S25B-C). Thus, the

odels were not fitted so subject specific to the empirical data that indi-

idual subjects can be identified from their model-fit correlations with

reat accuracy. Model personalization but not model complexity could

ave a positive influence on the subject specificity of the model-fit cor-

elations, although this effect was little consistent across both measures

f subject specificity (supplementary Fig. S25A-C). 

.5. Subject specificity of similarity maps 

Finally, we investigated how the model personalization may lead

o the enhanced reliabilities of the model parameters. We hypothe-

ized that model personalization has an effect on the similarity map-

ings ( Eq. 1 ) that characterize the agreement between the empirical

nd simulated FC patterns as a function of the model parameters. Hence,

e evaluated how well these similarity maps corresponded to one an-

ther between subjects and between distinct empirical FC realizations

f the same subject by calculating their within- and between-subject

orrelations across parameter settings. The results showed that model

ersonalization did not alter the within-subject correlations of the sim-

larity maps consistently across parcellations, and correlation-based re-

iability of the similarity maps was very high for most of the parcella-

ions ( Fig. 6 A). On the other hand, the influence of enhanced person-

lization on the specificity index and fingerprinting accuracy was pos-

tive for all atlases ( Fig. 6 B-C). Combined, these findings suggest that

odel personalization strongly enhanced subject-specific properties of

he similarity maps that became less comparable across (but not within)

ubjects. 

Given our previous findings, one might suspect that model complex-

ty would then exert no consistent effect on the subject specificities of the

imilarity mappings ( Eq. 1 ). However, we actually found that the distri-

utions of the within-subject similarity map correlations could diverge

onsiderably between model complexities depending on the parcella-

ion ( Fig. 7 A). Moreover, the specificity indices of the similarity maps

f the most complex model (the neural mass model) exceeded those

f the less complex ones for all parcellations except for the Harvard-

xford and Schaefer atlases ( Fig. 7 B), which are also characterized by a

igher variability of the intra-subject correlations (reliability) of similar-

ty maps ( Fig. 7 A). The fingerprinting accuracies of the similarity map-

ings were also increased for incrementing levels of model complexities

or all atlases ( Fig. 7 C). These findings indicate that higher model com-

lexity could lead to an enhanced subject specificity with respect to the

imilarity maps ( Fig. 7 B-C). 

Analogous to the ICC of the model parameters ( Fig. 3 ; supplemen-

ary Fig. S20), we verified whether these enhancements for more com-
13 
lex models could be explained by the absence of the signal latency in

he network of the linear model. Again, we considered the non-linear

odels with zero global delay 𝜏 = 0 in Eq. (4) and Eq. (8) . Subse-

uently, we determined the similarity maps under this constraint and

alculated the specificity indices and fingerprinting accuracies from

he correlations between these one-parameter (global coupling) simi-

arity maps. The results of this analysis showed that the ordering of

he specificity index and fingerprinting accuracy for varying model

omplexity was preserved (supplementary Fig. S26). Hence, enhanced

odel complexity indeed yields similarity maps that are more subject

pecific. 

We also checked whether the different types of specificity indices

single-modal, structure-function, model-fit, similarity maps) could be

elated to the goodness-of-fits of the model to the empirical data. Even

hough the tested relationships varied considerably in terms of variance

xplained, almost all of them were negative (supplementary Fig. S27).

his indicates that a higher goodness-of-fit is more likely to reflect a less

ubject-specific model fit. 

. Discussion 

In this study, we showed that dynamical whole-brain models may

e fitted to the empirical data with a reliability ranging from ”poor ” to

good ” depending on the exact implementation of the dynamical whole-

rain modeling paradigm and brain parcellation utilized ( Fig. 2; Fig. 3 ).

ubsequently, we showed that the fits of the models might be estab-

ished through diverging or converging simulated FC patterns, where

he variability of the empirical data (FC) used for the model validation

an either be enhanced or suppressed by the fitting process. We also

emonstrated that simulated FC represented by individual edges or the

ntire connectivity patterns can be more reliable and subject-specific

han the empirical FC ( Fig. 2; Fig. 3; Fig. 4 ). We additionally demon-

trated that the simulated FC may exhibit correlations with the empirical

C and empirical FC that exhibit significant subject specificity ( Fig. 5 ;

upplementary Fig. S25). 

We observed that model personalization positively influences the re-

iability and subject specificity of the modeling results ( Fig. 2; Fig. 4;

ig. 5; Fig. 6 ; supplementary Fig. S25). Furthermore, model complex-

ty often did not affect the reliability or the subject specificity consis-

ently across parcellations and measures when the fitted model param-

ters and simulated FCs were considered. A simple linear model can in

ome cases have enhanced reliability and subject specificity relative to

ore complex, non-linear models. Nevertheless, the similarity mappings

ere more subject specific for more complex models consistently for al-

ost all considered parcellations ( Fig. 7 ). We sampled all our results

or 8 distinct, state-of-the-art brain atlases and demonstrated the pro-

ounced parcellation-induced variation in the modeling results relative

o the purely empirical results. Here, we discuss these findings in the

roader scientific context and emphasize their relevance. 

.1. Reliability of modeling results 

Even though the (test-retest) reliability has been actively investi-

ated for the empirical FC ( Birn et al., 2013; Noble et al., 2019; 2017;

annunzi et al., 2017; Shehzad et al., 2009; Van Dijk et al., 2010 ), the

iterature lacks a comprehensive assessment of it for dynamical whole-

rain models. One study nevertheless demonstrated their ”excellent ” re-

iability for multiple realizations of the empirical SC (but not FC) for

he same subject ( Cicchetti and Sparrow, 1981; Muldoon et al., 2016 ),

hile another considered the within-subject correspondences of the fit-

ed model parameters for only one subject, one parcellation and one

ype of model ( Donnelly-Kehoe et al., 2019 ). Our study provided a com-

rehensive investigation of the reliability of the modeling results for a

ohort of 200 subjects by considering the ICCs of several realizations

f the optimal model parameters and simulated FCs fitted to the corre-

ponding different realizations of the empirical FCs for the same subject.
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Fig. 6. Influence of parcellation and personalization of the phase oscillator model on the correspondences of the similarity mappings ( Eq. 1 ). (A) Distributions of 

the within-subject correlations of the similarity maps calculated across parameter settings for the various parcellations considered in this study ( Table 1 ). The extent 

of the model personalization as given by the combinations of the subject-specific or group-averaged natural frequencies (freqs.) and SC is indicated in the legend. 

The vertical dashed black line separates the brain atlases constructed on the basis of structural data (left block) from those based on functional data (right block). 

(B) Specificity indices ( Eq. 15 ) calculated from the similarity mapping correlations. The symbols and shaded areas mark the medians and the (Bonferroni corrected) 

95% confidence intervals across the 50,000 bootstrapped specificity index estimations, respectively. (C) Fingerprinting accuracy when identifying individual subjects 

by comparing the similarity mappings of one particular empirical FC with one another. 
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he obtained results demonstrated that the reliability of the simulated

C can be larger (and also smaller) than that of the empirical FC depend-

ng on the parcellation and exact model implementation ( Fig. 2; Fig. 3 ).

ere, our findings of the ”fair ” reliability of the empirical FC agreed

ith the literature ( Noble et al., 2019; 2017 ). As a next step, future

tudies may investigate how the simultaneous variation of the empiri-

al SC and FC impacts the reliability of dynamical whole-brain modeling

esults. Our study and the study by Muldoon et al. (2016) may be used

s a starting point for such an investigation, where our study in partic-
14 
lar could be exploited for the selection of the modeling conditions to

onsider. 

The results of this study, however, primarily suggest that the use

f dynamical whole-brain models should be tightly connected with an

stimate of the reliability of their results in order to enhance the inter-

retability of the observations. Despite the reported enhanced reliability

f the modeling outcomes, our findings clearly indicate that the ICCs of

he modeling results depend highly on the exact implementation of the

ynamical whole-brain modeling paradigm. In fact, the reliability of the



J.W.M. Domhof, S.B. Eickhoff and O.V. Popovych NeuroImage 257 (2022) 119321 

Fig. 7. Influence of parcellation and model complexity with similar model personalization on the correspondences of the similarity mappings ( Eq. 1 ). (A) Distributions 

of the within-subject correlations of the similarity maps calculated across parameter settings for the various parcellations considered in this study ( Table 1 ). The linear 

model (blue) corresponds to a low complexity, the phase oscillator model (green) to a moderate complexity, and neural mass model (purple) to a high complexity. 

The vertical dashed black line separates the brain atlases constructed on the basis of structural data (left block) from those based on functional data (right block). 

(B) Specificity indices ( Eq. 15 ) calculated from the similarity mapping correlations. The symbols and shaded areas mark the medians and the (Bonferroni corrected) 

95% confidence intervals across the 50,000 bootstrapped specificity index estimations, respectively. (C) Fingerprinting accuracy when identifying individual subjects 

by comparing the similarity mapping of one particular empirical FC with one another. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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imulated FC edges was lower than that of the empirical FC edges when

onsidering many of the tested conditions ( Fig. 2; Fig. 3 ). Moreover,

he model parameters often exhibited ”poor ” reliability, which may also

ometimes be the case for simulated FC, indicating they exhibit substan-

ial variance for distinct empirical FC realizations of the same subject.

e frequently observed such an unreliability and unspecificity for lit-

le personalized models with e.g., the group-averaged SC that is widely

sed in the literature. In the absence of other personalized factors, e.g.,

ubject-specific natural frequencies, such models are hardly reliable and

pecific. These results are of importance for the neuroscientific conclu-

ions derived from the dynamical whole-brain modeling practices pub-

ished in the literature, which we adapted and used in this study; see be-

ow. They therefore raise the question how reliable published dynamical

hole-brain modeling studies actually are. 
15 
The literature on dynamical whole-brain modeling is highly hetero-

eneous with respect to both the reconstruction of the empirical SC

nd FC from empirical MRI data as well as the model implementations.

e, for instance, only covered three of many possible model descrip-

ions that have regularly been used in the whole-brain modeling lit-

rature, which also included the (Landau-Stuart) limit-cycle oscillator

odel ( Deco et al., 2017; Ghosh et al., 2008 ), the (reduced) Wong-Wang

odel ( Deco et al., 2014b; Wong and Wang, 2006 ) and other (more com-

lex) biophysically-oriented models ( Abeysuriya et al., 2018; Bick et al.,

020; Deco and Jirsa, 2012; Hansen et al., 2015; Honey et al., 2007;

askar et al., 2021 ). Hence, the methodological procedures may vary

onsiderably between dynamical whole-brain modeling studies, and for

ost of these variations it is still unclear whether they produce reliable

odeling results. This notion further strengthens our recommendation
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hat dynamical whole-brain modeling studies should explicitly estimate

he reliability of the reported results. A consistent reporting of the re-

iability of results may also help identify best practices in dynamical

hole-brain modeling. 

.2. Subject specificity of simulated functional connectivity patterns 

Various studies validated the dynamical whole-brain models on the

asis of a variety of statistics ( Cabral et al., 2011; Deco et al., 2019;

017; 2013; Hansen et al., 2015; Naskar et al., 2021 ). Nevertheless, the

orrelation between the empirical and simulated FC still seems to be

he current state-of-the-art in whole-brain modeling ( Abeysuriya et al.,

018; Aquino et al., 2022; Naskar et al., 2021; Saggio et al., 2016 ),

nd so we used this particular measure for model validation as well.

owever, by computing the within-subject, single-modal correlations,

e demonstrated that this model fitting procedure can yield strongly

iverging simulated FC patterns depending on the model implementa-

ion and parcellation ( Fig. 4 ). Moreover, even when simulated FCs had

imilar connectivity motifs across different empirical FC realizations of

he same subject, this could still reflect an unspecific increase in both

he within- and between-subject single-modal correlations ( Fig. 4 ). 

On a positive note, the reliability and subject specificity of the model

arameters and simulated FC can essentially be improved by enhancing

he model personalization. Furthermore, the correspondences between

he simulated FC and the empirical SC were subject specific, that is, their

pecificity indices were statistically distinguishable from zero, only if

he personalized empirical SC was used for model construction ( Fig. 5 ).

ence, this result demonstrated that some of these subject-specific SC

atterns are embedded in the simulated FC after the model simula-

ions. We also found that the model-fit correlations can be significantly

ubject-specific (supplementary Fig. S25). The dynamical whole-brain

odels thus seem to have the ability to integrate connectivity patterns

rom both the (personalized) empirical SC and FC, which may (in part)

xplain how they replicate resting-state brain activity at a personalized

evel ( Bansal et al., 2018; Deco et al., 2017; Jirsa et al., 2017; Ritter

t al., 2013; Sanz-Leon et al., 2015 ), and how they yield good subject

lassification results ( Iravani et al., 2021; Zimmermann et al., 2018b ). 

Nevertheless, our results merely showed that model construction on

he basis of the personalized empirical SC can introduce subject-specific

ubtleties in the simulated FC; they do not explicitly reveal to which

clinical) purposes this may be beneficial other than subject identifica-

ion ( Fig. 4; Fig. 5 ). Furthermore, the specificity indices of the structure-

unction and model-fit correlations involving a simulated FC had com-

arable and small scales, especially when comparing them to the much

igher single-modal specificity indices ( Fig. 4 ). This indicates that the

odels do not straightforwardly map the empirical SC to the simulated

C with high specificity. We therefore propose that the simulated FC

ssimilating a diversity of personalized information should be regarded

s a separate connectome modality together with the empirical SC and

mpirical FC. 

For the single-modal and structure-function correlations, we

ould apply the subject specificity analyses also to purely empir-

cal data. Here, the specificity indices of the empirical structure-

unction relationship ( Fig. 5 ) roughly agree with the study by

immermann et al. (2018a) . In addition, we identified individual sub-

ects based on the structure-function correlations by identifying one

C (empirical or simulated) from all empirical SC and by identify-

ng one empirical SC from all FC. For the empirical FC, we found

he computed fingerprinting accuracies resembling the results reported

y Messé (2020) . Also the identification of one FC from all SC mani-

ested much higher success rates than vice versa when considering the

on-linear models ( Fig. 5 ). The latter result agrees with the problem-

tic inference of the empirical SC from the empirical FC reported by

oney et al. (2009) . The linear model was particularly different from

he non-linear models with respect to the structure-function correla-

ions. In particular, it exhibited large values of the structure-function
16 
pecificity index, and could have enhanced fingerprinting accuracy ir-

espective of whether one simulated FC was identified from all empirical

C or the other way around ( Fig. 5 ). Such a rigid connection between

tructure and function, which may impair the flexibility of a variety of

unctions emerging from the same structure, was observed neither in

he brain ( Deco et al., 2011; Hansen et al., 2015; Honey et al., 2009;

once-Alvarez et al., 2015 ) nor in the non-linear models considered in

his study. 

Also the fingerprinting accuracies for the single-modal correlations

f the empirical FC ( Fig. 4 ) are in agreement with the literature ( Finn

t al., 2015; Li et al., 2021 ). However, the latter were rather vari-

ble across parcellations with a difference of up to 20% ( Fig. 4 ). Even

hough the atlas granularity is known to influence the fingerprinting ac-

uracy ( Peña Gómez et al., 2018; Li et al., 2021 ), we minimized this

ffect by selecting parcellations that contained roughly the same num-

er of parcels. Our study therefore demonstrates the considerable effect

f the parcellation technique in isolation on the fingerprinting analysis,

hich has not been assessed previously. With respect to the fingerprint-

ng analysis, we also acknowledge that the limited number of subjects

sed in our study may lead to some positive bias in the fingerprinting

ccuracy ( Li et al., 2021; Waller et al., 2017 ). Nevertheless, as we per-

ormed the same fingerprinting analysis for different modalities, this

ias (if any) should be included in all results and hence does not render

he comparison invalid. 

.3. Model implementations 

Enhanced model personalization influenced the within-subject cor-

elations of the similarity maps mildly at best, while it increased the

pecificity indices of these mappings ( Fig. 6 ). Given Eq. (15) , this im-

lies a decrease in the correspondence of the similarity maps across sub-

ects. Qualitatively, the latter finding agrees with the similarity maps

hown in supplementary Figs. S3-S10 as well. The observed decrease

n the inter-subject correspondence of the similarity mappings can also

nduce additional variation in the location of the maxima of these simi-

arity mappings (optimal model parameters) between subjects. This is

xplicitly demonstrated by the enhancements of the between-subject

ariance in the optimal model parameters for enhanced model person-

lization ( Fig. 2 ). Despite the relatively untouched within-subject cor-

elations of the similarity maps, increased model personalization also

omewhat enhanced the within-subject variance of the optimal model

arameters, but not as much as the between-subject variance ( Fig. 2 ).

iven Eq. (14) , this then leads to the higher ICC for enhanced model per-

onalization. Taken together, we discovered that the higher reliability

f the model parameters for more personalized dynamical whole-brain

odels is induced by a decrease in the comparability of the similar-

ty maps between subjects. Future studies should confirm whether en-

anced model personalization indeed improves the differentiability of

odeling results across subjects in, for example, classification studies. 

We sampled our results for 6 different model implementations that

ere based on two non-linear models and one linear model, which were

ll adapted from the literature ( Deco et al., 2009; Galán, 2008; Ponce-

lvarez et al., 2015; Saggio et al., 2016 ). Here, we note that not all pa-

ameters of the considered models can straightforwardly be interpreted

nd associated with brain dynamics. We therefore consider them in the

rst approximation as model properties that may influence the quality

f the model validation, reliability and specificity. Moreover, the lit-

rature also inspired the use of the grand-averaged and personalized

mpirical SCs for model construction and the wielding of the subject-

pecific frequency profiles in the simulations of the phase oscillator

odel. Iravani et al. (2021) and Zimmermann et al. (2018b) , for in-

tance, constructed their models on the basis of group-averaged and per-

onalized empirical SCs, respectively, before using the modeling results

or subject classifications. In addition, several recent studies embedded

dditional region-specific and potentially subject-specific data (among

thers, regional frequency profiles) in the dynamical whole-brain mod-
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ling workflow ( Deco et al., 2018b; 2019; Demirta ş et al., 2019; Domhof

t al., 2021b; Donnelly-Kehoe et al., 2019; Jung et al., 2021; Kringel-

ach et al., 2020; Popovych et al., 2021 ). The investigation presented

n this study may be extended by considering, for example, limit-cycle

odels ( Deco et al., 2017 ), where the additional model parameters con-

rolling the oscillator amplitudes can be varied for further model per-

onalization. A recent study also demonstrated that subject- and region-

pecific data can be incorporated into a neural mass model ( Demirta ş

t al., 2019 ), indicating that model personalization is in active investi-

ation nowadays. 

The two non-linear models (the Kuramoto and Wilson-Cowan mod-

ls) were selected for three particular reasons. First, both models have

requently been used in previous investigations involving dynamical

hole-brain models ( Abeysuriya et al., 2018; Daffertshofer and van

ijk, 2011; Deco et al., 2009; Hellyer et al., 2016; Jung et al., 2021;

essé et al., 2014; Muldoon et al., 2016; Ponce-Alvarez et al., 2015;

opovych et al., 2021 ). Second, their dynamical behaviors under dif-

erent parameter conditions can be understood and controlled well, be-

ause they are sufficiently reduced in terms of complexity and provided

ith good documentation ( Kuramoto, 1984; Wilson and Cowan, 1972 ).

hird, their underlying concepts and implementations in whole-brain

odeling studies diverge considerably, which makes it more probable

hat differences are found between models. In particular, published stud-

es used the Kuramoto model (just like a network of Landau-Stuart limit-

ycle oscillators) to model the BOLD signal dynamics directly from the

mpirical SC ( Deco et al., 2018a; 2019; 2017; Domhof et al., 2021b;

ung et al., 2021; Ponce-Alvarez et al., 2015; Popovych et al., 2021 ),

hereas the Wilson-Cowan model requires a haemodynamic conversion

odel since it specifically models interactions between neural masses.

owever, the modeling of BOLD signal variations directly from the em-

irical SC does not reflect the neural dynamics underlying the BOLD

ignal, and hence future studies could check whether a transformation

f the empirical SC matrix might be more appropriate in this case. 

Furthermore, there were two reasons for the selection of the linear

odel. First, its analytical solution ensured that we could estimate the

eliability of its global coupling parameter in the absence of any spec-

fications associated with model simulations ( Saggio et al., 2016 ). We

ctually found this reliability to be at about the same level as those of

he global couplings of the non-linear models if signal latency was dis-

egarded (supplementary Fig. S20). Second, as mentioned in Materials

nd Methods, the model reflects the diffusion of noise across the em-

irical SC ( Galán, 2008; Saggio et al., 2016 ). This process can be seen

s a (linear) scaling of the direct dependencies included in the empir-

cal SC to indirect dependencies, which are more compatible with the

efinition of the FC ( Das et al., 2017; Liégeois et al., 2020 ). In most

ases, we observed that model complexity did not exert a particular

ncreasing or decreasing influence on the reliability or subject speci-

city of the results of the model fitting ( Fig. 3; Fig. 4 ; supplementary

ig. S25). Also, there were no particular differences with respect to the

oodness-of-fit (supplementary Fig. S11). In other words, with regard to

the reliability and specificity of) the wielded model fitting procedure,

he Kuramoto and neural mass models in fact do not seem to outperform

he linear model. On the contrary, the linear model sometimes demon-

trated stronger reliability and subject-specificity than the non-linear

odels with the same level of personalization. However, the similar-

ty mappings of more complex models appeared to exhibit much en-

anced subject specificity as reflected by both the specificity index and

he fingerprinting accuracy ( Fig. 7 ). Also the results obtained for the

tructure-function relationship indicated that complex non-linear mod-

ls can deliver more realistic results as discussed above. Therefore, the

on-linear models appeared to have an increased potential in terms of

odeling structure-function interactions and preserving and enhancing

he reliability and subject specificity of empirical data as well as model

ersonalization. However, the presented results may also indicate that

he model validation procedure of fitting static empirical and simulated

Cs is suboptimal in spite of being state-of-the-art as discussed above.
17 
uture studies may therefore scrutinize the influence of the model fit-

ing procedure on the reliability and subject specificity of dynamical

hole-brain modeling results and propose concrete procedures on how

o improve this reliability. In particular, they could investigate whether

ultimodalities or degeneracy in the similarity maps, which can be ob-

erved in supplementary Figs. S3-S10 for some combinations of parcel-

ation and model, can affect the reliability and specificity of the model

nd should therefore be considered more explicitly when selecting the

ptimal model parameters. Alternatively, they could examine whether

 completely different model fitting strategy, such as fitting the models

n the basis of the dynamics of the FC ( Brovelli et al., 2017; Hansen

t al., 2015; Heitmann and Breakspear, 2018; Hutchison et al., 2013;

ong et al., 2021; Preti et al., 2017 ), yields more reliable results. 

.4. Atlas variation 

A vast number of methods for parcellating the brain have been pro-

osed in the literature ( Amunts and Zilles, 2015; Eickhoff et al., 2018a;

018b ). A lot of attention was devoted to the effect that the brain parcel-

ation may have on the analyses of empirical data ( Albers et al., 2021;

rslan et al., 2018; Messé, 2020; Wang et al., 2009; Zalesky et al., 2010 )

nd recent modeling results ( Domhof et al., 2021b; Jung et al., 2021;

opovych et al., 2021 ). In this study, we put more emphasis on varying

he parcellation method rather than the granularity (number of parcels

ncluded in the atlas) when investigating the effect of the parcellation on

he modeling results. Previous studies support this focus: Even though

ranularity is a determining factor when considering statistical anal-

ses of empirical data ( Messé, 2020; Wang et al., 2009; Zalesky et al.,

010 ), parcellation-induced variations in the modeling results could not

e explained by only considering this property of the parcellations. In-

tead, variations in the model fitting quality were primarily related to

raph-theoretical network properties extracted from the empirical con-

ectomes ( Domhof et al., 2021b ) and to other data variables reflecting

ome statistical properties of the empirical data ( Popovych et al., 2021 ).

In the variation of the parcellations, we balanced between parcel-

ations derived from structural and functional data. Here, the included

unctionally-derived parcellations presumably optimize the regional ho-

ogeneity with respect to the voxel-wise FC ( Craddock et al., 2012;

chaefer et al., 2018; Shen et al., 2013; Urchs et al., 2019 ). In con-

rast, the structurally-derived atlases have not been designed to do the

ame for the SC, but may for example follow the anatomical folding

atterns of the cortex ( Desikan et al., 2006; von Economo and Koski-

as, 1925; Frazier et al., 2005; Goldstein et al., 2007; Makris et al.,

006; Rolls et al., 2015; Scholtens et al., 2018; Tzourio-Mazoyer et al.,

002 ). Our results portrayed distinctions between these structurally-

nd functionally-derived parcellations, especially when considering the

tructure-function correlations of the empirical SC with the simulated

C ( Fig. 5 ). The reliability and the (single-modal) subject specificity of

he simulated FC also demonstrated opposite tendencies for different

arcellation groups, where the former is enhanced for the structurally-

erived parcellations, while the latter is larger for the functionally-

erived parcellations ( Fig. 2; Fig. 3; Fig. 4 ). These distinctions between

he structurally- and functionally-derived brain atlases demonstrate that

he parcellation technique has a systematic impact on the modeling re-

ults, which can be organized according to particular parcellation princi-

les. Even though relationships were found between the goodness-of-fits

nd the subject specificities across parcellations, the quality of these as-

ociations was rather variable across models (supplementary Fig. S27).

ence, the precision with which the reliability and subject specificity

an be estimated from the goodness-of-fit, which is a proxy for the net-

ork properties of the empirical connectomes ( Domhof et al., 2021b ) as

ell as the empirical structure-function relationship and other statistical

roperties ( Popovych et al., 2021 ), is highly model-dependent. 

We also observed notable model-dependent, parcellation-induced

ifferences in the within-subject correlations of the similarity

aps ( Fig. 6; Fig. 7 ); see, for instance, the elongated boxes shown in
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ig. 6 and Fig. 7 for the Schaefer atlas relative to the other parcellations.

ince we found the reliability and specificity of the empirical FC to be

elatively stable across parcellations ( Fig. 2; Fig. 3; Fig. 4 ), we conclude

hat dynamical whole-brain models are sensitive to the choice of brain

tlas; see also Domhof et al. (2021b) and Popovych et al. (2021) . In par-

icular, these results imply that, even though the model is constructed

rom the same empirical SC, variations of the empirical FC for the same

ubject may lead to considerably different similarity maps depending on

he atlas (and model). We do not suggest that this is necessarily a neg-

tive facet of a particular brain atlas. When such parcellations are used

or model construction, the fitted models may, for instance, character-

ze the distinct brain states or other information stored in the different

esting-state empirical FC realizations of the same subject that are ob-

cured by other parcellations (for a discussion, see Finn (2021) ; Finn and

osenberg (2021) ). The negative relationships between the goodness-of-

ts and specificity indices support this notion (supplementary Fig. S27),

ecause these findings indicate that a better fit of the model to the

mpirical data is, in fact, more likely to reflect a more generic (hence

ot subject-specific) fit. All things considered, our study clearly demon-

trates that the proper selection of the brain parcellation appears to be

ven more important for research using dynamical whole-brain models

han studies straightforwardly analyzing the empirical data. 

In sum, we extensively assessed the (test-retest) reliability and the

ubject specificity of the modeling results and their relation to the em-

irical data. We showed that the model parameters may be fitted to

he empirical data with a reliability ranging from ”poor ” to ”good ”

epending on the implementation of the dynamical whole-brain mod-

ling paradigm. In addition, we demonstrated that more personalized

odels yield increasingly reliable and subject-specific modeling results.

or some modeling conditions, we even found that the modeling re-

ults were more reliable and subject specific than the results only in-

olving empirical data. We additionally illustrated that the simulated

C may concurrently adopt subject-specific connectivity patterns from

oth the empirical SC and the empirical FC through the model fitting

rocedure, which could support considering simulated FC as a separate

onnectome modality. Finally, we sampled all our findings for 8 state-

f-the-art parcellations and demonstrated the substantial impact that a

hange of parcellation can have on the modeling results, which by far

xceeded the parcellation-induced deflections in the results of the empir-

cal data. Taken together, our findings provide an exploratory account

n relevant methodological aspects of dynamical whole-brain model-

ng results. They contribute to the mechanistic understanding of (the

ersonalization of) these models and reveal best practices. Hence, the

resented results can be relevant for application of the whole-brain dy-

amical models and their further development. 
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