000907815 001__ 907815
000907815 005__ 20240705080646.0
000907815 0247_ $$2doi$$a10.3389/fninf.2022.884180
000907815 0247_ $$2Handle$$a2128/31218
000907815 0247_ $$2altmetric$$aaltmetric:128551223
000907815 0247_ $$2pmid$$a35662903
000907815 0247_ $$2WOS$$aWOS:000805555900001
000907815 037__ $$aFZJ-2022-02232
000907815 082__ $$a610
000907815 1001_ $$0P:(DE-HGF)0$$aFeldotto, Benedikt$$b0$$eCorresponding author
000907815 245__ $$aDeploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure
000907815 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000907815 3367_ $$2DRIVER$$aarticle
000907815 3367_ $$2DataCite$$aOutput Types/Journal article
000907815 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719987973_14188
000907815 3367_ $$2BibTeX$$aARTICLE
000907815 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907815 3367_ $$00$$2EndNote$$aJournal Article
000907815 520__ $$aSimulating the brain-body-environment trinity in closed loop is an attractive proposal to investigate how perception, motor activity and interactions with the environment shape brain activity, and vice versa. The relevance of this embodied approach, however, hinges entirely on the modeled complexity of the various simulated phenomena. In this article, we introduce a software framework that is capable of simulating large-scale, biologically realistic networks of spiking neurons embodied in a biomechanically accurate musculoskeletal system that interacts with a physically realistic virtual environment. We deploy this framework on the high performance computing resources of the EBRAINS research infrastructure and we investigate the scaling performance by distributing computation across an increasing number of interconnected compute nodes. Our architecture is based on requested compute nodes as well as persistent virtual machines; this provides a high-performance simulation environment that is accessible to multi-domain users without expert knowledge, with a view to enable users to instantiate and control simulations at custom scale via a web-based graphical user interface. Our simulation environment, entirely open source, is based on the Neurorobotics Platform developed in the context of the Human Brain Project, and the NEST simulator. We characterize the capabilities of our parallelized architecture for large-scale embodied brain simulations through two benchmark experiments, by investigating the effects of scaling compute resources on performance defined in terms of experiment runtime, brain instantiation and simulation time. The first benchmark is based on a large-scale balanced network, while the second one is a multi-region embodied brain simulation consisting of more than a million neurons and a billion synapses. Both benchmarks clearly show how scaling compute resources improves the aforementioned performance metrics in a near-linear fashion. The second benchmark in particular is indicative of both the potential and limitations of a highly distributed simulation in terms of a trade-off between computation speed and resource cost. Our simulation architecture is being prepared to be accessible for everyone as an EBRAINS service, thereby offering a community-wide tool with a unique workflow that should provide momentum to the investigation of closed-loop embodiment within the computational neuroscience community.
000907815 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000907815 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000907815 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000907815 536__ $$0G:(EU-Grant)800858$$aICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)$$c800858$$fH2020-SGA-INFRA-FETFLAG-HBP$$x3
000907815 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x4
000907815 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x5
000907815 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907815 7001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen Martin$$b1$$ufzj
000907815 7001_ $$0P:(DE-Juel1)184894$$aJimenez-Romero, Cristian$$b2$$ufzj
000907815 7001_ $$0P:(DE-HGF)0$$aBignamini, Christopher$$b3
000907815 7001_ $$0P:(DE-HGF)0$$aGutierrez, Carlos Enrique$$b4
000907815 7001_ $$0P:(DE-HGF)0$$aAlbanese, Ugo$$b5
000907815 7001_ $$0P:(DE-HGF)0$$aRetamino, Eloy$$b6
000907815 7001_ $$0P:(DE-HGF)0$$aVorobev, Viktor$$b7
000907815 7001_ $$0P:(DE-HGF)0$$aZolfaghari, Vahid$$b8
000907815 7001_ $$0P:(DE-HGF)0$$aUpton, Alex$$b9
000907815 7001_ $$0P:(DE-HGF)0$$aSun, Zhe$$b10
000907815 7001_ $$0P:(DE-HGF)0$$aYamaura, Hiroshi$$b11
000907815 7001_ $$0P:(DE-HGF)0$$aHeidarinejad, Morteza$$b12
000907815 7001_ $$0P:(DE-Juel1)168169$$aKlijn, Wouter$$b13$$ufzj
000907815 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b14$$ufzj
000907815 7001_ $$0P:(DE-HGF)0$$aCruz, Felipe$$b15
000907815 7001_ $$0P:(DE-HGF)0$$aMcMurtrie, Colin$$b16
000907815 7001_ $$0P:(DE-HGF)0$$aKnoll, Alois C.$$b17
000907815 7001_ $$0P:(DE-HGF)0$$aIgarashi, Jun$$b18
000907815 7001_ $$0P:(DE-HGF)0$$aYamazaki, Tadashi$$b19
000907815 7001_ $$0P:(DE-HGF)0$$aDoya, Kenji$$b20
000907815 7001_ $$0P:(DE-HGF)0$$aMorin, Fabrice O.$$b21
000907815 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2022.884180$$gVol. 16, p. 884180$$p884180$$tFrontiers in neuroinformatics$$v16$$x1662-5196$$y2022
000907815 8564_ $$uhttps://juser.fz-juelich.de/record/907815/files/fninf-16-884180.pdf$$yOpenAccess
000907815 909CO $$ooai:juser.fz-juelich.de:907815$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000907815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142538$$aForschungszentrum Jülich$$b1$$kFZJ
000907815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184894$$aForschungszentrum Jülich$$b2$$kFZJ
000907815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168169$$aForschungszentrum Jülich$$b13$$kFZJ
000907815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b14$$kFZJ
000907815 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000907815 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000907815 9141_ $$y2022
000907815 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000907815 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000907815 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907815 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907815 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000907815 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000907815 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000907815 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2021$$d2022-11-24
000907815 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-24
000907815 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-24
000907815 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T13:08:14Z
000907815 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T13:08:14Z
000907815 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T13:08:14Z
000907815 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-24
000907815 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-24
000907815 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-24
000907815 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-24
000907815 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-24
000907815 920__ $$lno
000907815 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000907815 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000907815 980__ $$ajournal
000907815 980__ $$aVDB
000907815 980__ $$aI:(DE-Juel1)JSC-20090406
000907815 980__ $$aI:(DE-Juel1)INM-6-20090406
000907815 980__ $$aUNRESTRICTED
000907815 9801_ $$aFullTexts
000907815 981__ $$aI:(DE-Juel1)IAS-6-20130828