001     907822
005     20230308135201.0
024 7 _ |a 10.1080/17538947.2022.2061617
|2 doi
024 7 _ |a 1753-8947
|2 ISSN
024 7 _ |a 1753-8955
|2 ISSN
024 7 _ |a 2128/31225
|2 Handle
024 7 _ |a WOS:000783506400001
|2 WOS
037 _ _ |a FZJ-2022-02233
082 _ _ |a 910
100 1 _ |a Bayat, Bagher
|0 P:(DE-Juel1)177038
|b 0
|e Corresponding author
245 _ _ |a One decade (2011–2020) of European agricultural water stress monitoring by MSG-SEVIRI: workflow implementation on the Virtual Earth Laboratory (VLab) platform
260 _ _ |a London [u.a.]
|c 2022
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1653387788_29750
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cloud computing facilities can provide crucial computing support for processing the time series of satellite data and exploiting their spatio-temporal information content. However, dedicated efforts are still required to develop workflows, executable on cloud-based platforms, for ingesting the satellite data, performing the targeted processes, and generating the desired products. In this study, an operational workflow is proposed, based on monthly Evaporative Stress Index (ESI) anomaly, and implemented in cloud-based online Virtual Earth Laboratory (VLab) platform, as a demonstration, to monitor European agricultural water stress. To this end, daily time-series of actual and reference evapotranspiration (ETa and ET0), from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor, were used to execute the proposed workflow successfully on VLab. The execution of the workflow resulted in obtaining one decade (2011–2020) of European monthly agricultural water stress maps at 0.04˚ spatial resolution and corresponding stress reports for each country. To support open science, all the workflow outputs are stored in GeoServer, documented in GeoNetwork, and made available through MapStore. This enables creating a dashboard for better visualization of the results for end-users. The results from this study demonstrate the capability of VLab platform for water stress detection from time series of SEVIRI-ET data.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a ERA-PLANET - The European network for observing our changing planet (689443)
|0 G:(EU-Grant)689443
|c 689443
|f H2020-SC5-2015-one-stage
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 1
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 2
700 1 _ |a Giuliani, Gregory
|0 0000-0002-1825-8865
|b 3
700 1 _ |a Santoro, Mattia
|0 0000-0003-0401-3100
|b 4
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 5
773 _ _ |a 10.1080/17538947.2022.2061617
|g Vol. 15, no. 1, p. 730 - 747
|0 PERI:(DE-600)2410527-2
|n 1
|p 730 - 747
|t International journal of digital earth
|v 15
|y 2022
|x 1753-8947
856 4 _ |u https://juser.fz-juelich.de/record/907822/files/Digital%20Earth%20paper.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907822
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177038
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129461
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-05-05T08:03:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-05-05T08:03:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double blind peer review
|d 2022-05-05T08:03:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J DIGIT EARTH : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-09
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21