000907824 001__ 907824
000907824 005__ 20230123110622.0
000907824 0247_ $$2doi$$a10.1038/s41593-022-01059-9
000907824 0247_ $$2ISSN$$a1097-6256
000907824 0247_ $$2ISSN$$a1546-1726
000907824 0247_ $$2Handle$$a2128/31560
000907824 0247_ $$2altmetric$$aaltmetric:128344844
000907824 0247_ $$2pmid$$apmid:35578132
000907824 0247_ $$2WOS$$aWOS:000799439200001
000907824 037__ $$aFZJ-2022-02235
000907824 082__ $$a610
000907824 1001_ $$0P:(DE-HGF)0$$aHe, Tong$$b0
000907824 245__ $$aMeta-matching as a simple framework to translate phenotypic predictive models from big to small data
000907824 260__ $$aNew York, NY$$bNature America$$c2022
000907824 3367_ $$2DRIVER$$aarticle
000907824 3367_ $$2DataCite$$aOutput Types/Journal article
000907824 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658897823_15482
000907824 3367_ $$2BibTeX$$aARTICLE
000907824 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907824 3367_ $$00$$2EndNote$$aJournal Article
000907824 520__ $$aWe propose a simple framework-meta-matching-to translate predictive models from large-scale datasets to new unseen non-brain-imaging phenotypes in small-scale studies. The key consideration is that a unique phenotype from a boutique study likely correlates with (but is not the same as) related phenotypes in some large-scale dataset. Meta-matching exploits these correlations to boost prediction in the boutique study. We apply meta-matching to predict non-brain-imaging phenotypes from resting-state functional connectivity. Using the UK Biobank (N = 36,848) and Human Connectome Project (HCP) (N = 1,019) datasets, we demonstrate that meta-matching can greatly boost the prediction of new phenotypes in small independent datasets in many scenarios. For example, translating a UK Biobank model to 100 HCP participants yields an eight-fold improvement in variance explained with an average absolute gain of 4.0% (minimum = -0.2%, maximum = 16.0%) across 35 phenotypes. With a growing number of large-scale datasets collecting increasingly diverse phenotypes, our results represent a lower bound on the potential of meta-matching.
000907824 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000907824 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907824 7001_ $$0P:(DE-HGF)0$$aAn, Lijun$$b1
000907824 7001_ $$0P:(DE-HGF)0$$aChen, Pansheng$$b2
000907824 7001_ $$0P:(DE-HGF)0$$aChen, Jianzhong$$b3
000907824 7001_ $$0P:(DE-HGF)0$$aFeng, Jiashi$$b4
000907824 7001_ $$0P:(DE-Juel1)136848$$aBzdok, Danilo$$b5
000907824 7001_ $$0P:(DE-HGF)0$$aHolmes, Avram J.$$b6
000907824 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b7
000907824 7001_ $$0P:(DE-HGF)0$$aYeo, B. T. Thomas$$b8$$eCorresponding author
000907824 773__ $$0PERI:(DE-600)1494955-6$$a10.1038/s41593-022-01059-9$$n1$$p795-804$$tNature neuroscience$$v25$$x1097-6256$$y2022
000907824 8564_ $$uhttps://juser.fz-juelich.de/record/907824/files/s41593-022-01059-9.pdf
000907824 8564_ $$uhttps://juser.fz-juelich.de/record/907824/files/HeTong_preprint.pdf$$yOpenAccess
000907824 909CO $$ooai:juser.fz-juelich.de:907824$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907824 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National University of Singapore$$b0
000907824 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National University of Singapore$$b1
000907824 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National University of Singapore$$b2
000907824 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National University of Singapore$$b3
000907824 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Bytedance, Bejing, China$$b4
000907824 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)136848$$a McGill University, Montreal QC, Canada$$b5
000907824 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
000907824 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Yale University, New Haven, CT, USA$$b6
000907824 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b7$$kFZJ
000907824 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$aHHU Düsseldorf $$b7
000907824 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National University of Singapore$$b8
000907824 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000907824 9141_ $$y2022
000907824 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000907824 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000907824 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907824 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000907824 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000907824 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT NEUROSCI : 2021$$d2022-11-12
000907824 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000907824 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000907824 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000907824 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000907824 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000907824 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000907824 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000907824 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000907824 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bNAT NEUROSCI : 2021$$d2022-11-12
000907824 920__ $$lyes
000907824 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000907824 980__ $$ajournal
000907824 980__ $$aVDB
000907824 980__ $$aUNRESTRICTED
000907824 980__ $$aI:(DE-Juel1)INM-7-20090406
000907824 9801_ $$aFullTexts