001     907824
005     20230123110622.0
024 7 _ |a 10.1038/s41593-022-01059-9
|2 doi
024 7 _ |a 1097-6256
|2 ISSN
024 7 _ |a 1546-1726
|2 ISSN
024 7 _ |a 2128/31560
|2 Handle
024 7 _ |a altmetric:128344844
|2 altmetric
024 7 _ |a pmid:35578132
|2 pmid
024 7 _ |a WOS:000799439200001
|2 WOS
037 _ _ |a FZJ-2022-02235
082 _ _ |a 610
100 1 _ |a He, Tong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Meta-matching as a simple framework to translate phenotypic predictive models from big to small data
260 _ _ |a New York, NY
|c 2022
|b Nature America
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1658897823_15482
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We propose a simple framework-meta-matching-to translate predictive models from large-scale datasets to new unseen non-brain-imaging phenotypes in small-scale studies. The key consideration is that a unique phenotype from a boutique study likely correlates with (but is not the same as) related phenotypes in some large-scale dataset. Meta-matching exploits these correlations to boost prediction in the boutique study. We apply meta-matching to predict non-brain-imaging phenotypes from resting-state functional connectivity. Using the UK Biobank (N = 36,848) and Human Connectome Project (HCP) (N = 1,019) datasets, we demonstrate that meta-matching can greatly boost the prediction of new phenotypes in small independent datasets in many scenarios. For example, translating a UK Biobank model to 100 HCP participants yields an eight-fold improvement in variance explained with an average absolute gain of 4.0% (minimum = -0.2%, maximum = 16.0%) across 35 phenotypes. With a growing number of large-scale datasets collecting increasingly diverse phenotypes, our results represent a lower bound on the potential of meta-matching.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a An, Lijun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chen, Pansheng
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Chen, Jianzhong
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Feng, Jiashi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bzdok, Danilo
|0 P:(DE-Juel1)136848
|b 5
700 1 _ |a Holmes, Avram J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 7
700 1 _ |a Yeo, B. T. Thomas
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1038/s41593-022-01059-9
|0 PERI:(DE-600)1494955-6
|n 1
|p 795-804
|t Nature neuroscience
|v 25
|y 2022
|x 1097-6256
856 4 _ |u https://juser.fz-juelich.de/record/907824/files/s41593-022-01059-9.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907824/files/HeTong_preprint.pdf
909 C O |o oai:juser.fz-juelich.de:907824
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Bytedance, Bejing, China
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a McGill University, Montreal QC, Canada
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)136848
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Yale University, New Haven, CT, USA
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)131678
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT NEUROSCI : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT NEUROSCI : 2021
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21