Hauptseite > Publikationsdatenbank > Meta-matching as a simple framework to translate phenotypic predictive models from big to small data > print |
001 | 907824 | ||
005 | 20230123110622.0 | ||
024 | 7 | _ | |a 10.1038/s41593-022-01059-9 |2 doi |
024 | 7 | _ | |a 1097-6256 |2 ISSN |
024 | 7 | _ | |a 1546-1726 |2 ISSN |
024 | 7 | _ | |a 2128/31560 |2 Handle |
024 | 7 | _ | |a altmetric:128344844 |2 altmetric |
024 | 7 | _ | |a pmid:35578132 |2 pmid |
024 | 7 | _ | |a WOS:000799439200001 |2 WOS |
037 | _ | _ | |a FZJ-2022-02235 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a He, Tong |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Meta-matching as a simple framework to translate phenotypic predictive models from big to small data |
260 | _ | _ | |a New York, NY |c 2022 |b Nature America |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1658897823_15482 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We propose a simple framework-meta-matching-to translate predictive models from large-scale datasets to new unseen non-brain-imaging phenotypes in small-scale studies. The key consideration is that a unique phenotype from a boutique study likely correlates with (but is not the same as) related phenotypes in some large-scale dataset. Meta-matching exploits these correlations to boost prediction in the boutique study. We apply meta-matching to predict non-brain-imaging phenotypes from resting-state functional connectivity. Using the UK Biobank (N = 36,848) and Human Connectome Project (HCP) (N = 1,019) datasets, we demonstrate that meta-matching can greatly boost the prediction of new phenotypes in small independent datasets in many scenarios. For example, translating a UK Biobank model to 100 HCP participants yields an eight-fold improvement in variance explained with an average absolute gain of 4.0% (minimum = -0.2%, maximum = 16.0%) across 35 phenotypes. With a growing number of large-scale datasets collecting increasingly diverse phenotypes, our results represent a lower bound on the potential of meta-matching. |
536 | _ | _ | |a 5254 - Neuroscientific Data Analytics and AI (POF4-525) |0 G:(DE-HGF)POF4-5254 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a An, Lijun |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Chen, Pansheng |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Chen, Jianzhong |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Feng, Jiashi |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Bzdok, Danilo |0 P:(DE-Juel1)136848 |b 5 |
700 | 1 | _ | |a Holmes, Avram J. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Eickhoff, Simon |0 P:(DE-Juel1)131678 |b 7 |
700 | 1 | _ | |a Yeo, B. T. Thomas |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41593-022-01059-9 |0 PERI:(DE-600)1494955-6 |n 1 |p 795-804 |t Nature neuroscience |v 25 |y 2022 |x 1097-6256 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907824/files/s41593-022-01059-9.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/907824/files/HeTong_preprint.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:907824 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Bytedance, Bejing, China |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a McGill University, Montreal QC, Canada |0 I:(DE-HGF)0 |b 5 |6 P:(DE-Juel1)136848 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Yale University, New Haven, CT, USA |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 7 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5254 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-12 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT NEUROSCI : 2021 |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-12 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-12 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b NAT NEUROSCI : 2021 |d 2022-11-12 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|