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ABSTRACT 

We propose a simple framework – meta-matching – to translate predictive models from 

large-scale datasets to new unseen non-brain-imaging phenotypes in small-scale studies. The 

key consideration is that a unique phenotype from a boutique study likely correlates with (but 

is not the same as) related phenotypes in some large-scale dataset. Meta-matching exploits 

these correlations to boost prediction in the boutique study. We apply meta-matching to 

predict non-brain-imaging phenotypes from resting-state functional connectivity. Using the 

UK Biobank (N=36,848) and HCP (N=1,019) datasets, we demonstrate that meta-matching 

can greatly boost the prediction of new phenotypes in small independent datasets in many 

scenarios. For example, translating a UK Biobank model to 100 HCP participants yields an 8-

fold improvement in variance explained with an average absolute gain of 4.0% (min=-0.2%, 

max=16.0%) across 35 phenotypes. With a growing number of large-scale datasets collecting 

increasingly diverse phenotypes, our results represent a lower bound on the potential of meta-

matching. 

 

 

  



1. INTRODUCTION 

Individual-level prediction is a fundamental goal in systems neuroscience and is 

important for precision medicine1–4. Therefore, there is growing interest in leveraging brain 

imaging data to predict non-brain-imaging phenotypes (e.g., fluid intelligence or clinical 

outcomes) in individual participants. To date however, most prediction studies are 

underpowered, including less than a few hundred participants. This has led to systemic issues 

related to low reproducibility and inflated prediction performance5–8. Prediction performance 

can greatly improve when training models with well-powered samples9–12. The advent of 

large-scale population-level human neuroscience datasets (e.g., UK Biobank, ABCD) is 

therefore critical to improving the performance and reproducibility of individual-level 

prediction. However, when studying clinical populations or addressing focused neuroscience 

topics, small-scale datasets are often unavoidable. Here, we propose a simple framework to 

effectively translate predictive models from large-scale datasets to new non-brain-imaging 

phenotypes (from hereon shortened to ‘phenotypes’) in small data.  

More specifically, given a large-scale brain imaging dataset (N > 10,000) with 

multiple phenotypes, we seek to translate models trained from the large dataset to new unseen 

phenotypes in a small independent dataset (N ≤ 200). We emphasize that the large and small 

datasets are independent. Furthermore, phenotypes in the small independent dataset do not 

have to overlap with those in the large dataset. In machine learning, this problem is known as 

meta-learning, learning-to-learn or lifelong learning13–16 and is also closely related to transfer 

learning17–19. For example, meta-learning can be applied to a large dataset (e.g., one million 

natural images) to train a deep neural network (DNN) to recognize multiple object categories 

(e.g., furniture and humans). The DNN can then be adapted to recognize a new, unseen object 

category (e.g., birds) with a limited set of samples20–22. By learning a common representation 

across many object categories, meta-learning is able to adapt the DNN to a new object 

category with relatively few examples21–23.  

The key observation underpinning our meta-learning approach is that the vast 

majority of phenotypes are not independent, but are inter-correlated (Figure S1). Indeed, 

previous studies have discovered a relatively small number of components that link brain 

imaging data and an entire host of phenotypes, such as cognition, mental health, 

demographics and other health attributes24–27. Therefore, a unique phenotype X examined by 

a small-scale boutique study is probably correlated with (but not the same as) a particular 

phenotype Y in some pre-existing large-scale population dataset. Consequently, a machine 

learning model that has been trained on phenotype Y in the large-scale dataset might be 



readily translated to phenotype X in the boutique study. In other words, meta-learning can be 

instantiated in human neuroscience by exploiting this existing correlation structure, a process 

we refer to as ‘meta-matching’.  

Meta-matching can be broadly applied to different types of magnetic resonance 

imaging (MRI) data. Here, we focused on the use of resting-state functional connectivity 

(RSFC) to predict phenotypes. RSFC measures the synchrony of resting-state functional MRI 

signals between brain regions28–30, while participants lie at rest without any ‘extrinsic’ task. 

RSFC has provided important insights into human brain organization across health and 

disease31–35. Given any brain parcellation atlas36–39, a whole brain RSFC matrix can be 

computed for each participant. Each entry in the RSFC matrix reflects the functional coupling 

strength between two brain parcels. In recent years, there is increasing interest in the use of 

RSFC for predicting phenotypes (e.g., age or cognition) of individual participants, i.e., 

functional connectivity fingerprint40–45. Thus, our study will utilize RSFC-based phenotypic 

prediction to illustrate the power and field-wide utility of meta-matching. 

To summarize, we proposed meta-matching, a simple framework to exploit large-

scale brain imaging datasets for boosting RSFC-based prediction of new, unseen phenotypes 

in small datasets. The meta-matching framework is highly flexible and can be coupled with 

any machine learning algorithm. Here, we considered kernel ridge regression (KRR) and 

fully connected deep neural network (DNN), which we have previously demonstrated to 

work well for RSFC-based behavioral and demographics prediction11. We developed two 

classes of meta-matching algorithms: basic and advanced. Our approach was evaluated using 

36,848 participants from the UK Biobank25,46 and 1,019 participants from the Human 

Connectome Project47.   



2. RESULTS 

2.1 UK Biobank experimental setup 

We utilized 55 x 55 resting-state functional connectivity (RSFC) matrices from 

36,848 participants and 67 phenotypes from the UK Biobank46. The 67 phenotypes were 

winnowed down from an initial list of 3,937 phenotypes by a systematic procedure that 

excluded brain variables, binary variables (except sex), repeated measures and measures 

missing from too many participants. Phenotypes that were not predictable even with 1000 

participants were also excluded; note that these 1000 participants were excluded from the 

36,848 participants. See Methods for more details.  

The data was randomly divided into training (N = 26,848; 33 phenotypes) and test (N 

= 10,000; 34 phenotypes) meta-sets (Figure 1A). No participant or phenotype overlapped 

across the training and test meta-sets. Figure 1B shows the absolute Pearson’s correlations 

between the training and test phenotypes. The test meta-set was further split into K 

participants (K-shot; K = 10, 20, 50, 100, 200) and remaining 10,000-K participants. The 

group of K participants served to mimic traditional small-N studies.  

For each phenotype in the test meta-set, a classical machine learning baseline (KRR) 

was trained on the RSFC matrices of the K participants and applied to the remaining 10,000 – 

K participants. Hyperparameters were tuned on the K participants. We note that small-N 

studies obviously do not have access to the remaining 10,000 – K participants. However, in 

our experiments, we utilized a large sample of participants (10,000 – K) to accurately 

establish the performance of the classical machine learning baseline. We repeated this 

procedure 100 times (each with different sample of K participants) to ensure robustness of the 

results48.  

KRR was chosen as a baseline because of the small number of hyperparameters, 

which made it suitable for small-N studies. We have also previously demonstrated that KRR 

and deep neural networks can achieve comparable prediction performance in functional 

connectivity prediction of behavior and demographics in both small-scale and large-scale 

datasets11.  

 

2.2 Basic meta-matching outperforms classical KRR 

The meta-matching framework is highly flexible and can be instantiated with different 

machine learning algorithms. Here, we considered KRR and fully connected DNN, which we 

have previously demonstrated to work well for RSFC-based behavioral and demographics 



prediction11. We considered two classes of meta-matching algorithms: basic and advanced 

(Figure 2).  

In ‘basic meta-matching (KRR)’, for each phenotype in the training meta-set, we 

trained a kernel ridge regression (KRR) model to predict the phenotype from the RSFC 

matrices. We then applied the 33 trained KRR models to the RSFC of the K participants 

(from the test meta-set), yielding 33 predictions per participant. For each test meta-set 

phenotype, we picked the prediction (out of 33 predictions) that predicted the test meta-set 

phenotype the best in the K participants. The corresponding KRR model (yielding this best 

prediction) was used to predict the test phenotype in the remaining 10,000 – K participants. 

We also repeated the above procedure using a generic fully connected feedforward DNN 

instead of KRR, yielding the ‘basic meta-matching (DNN)’ algorithm. The only difference is 

that instead of training 33 DNNs (which would require too much computational time), a 

single 33-output DNN was utilized. See Methods for details.  

Figure 3A shows the prediction accuracies (Pearson's correlation coefficient) 

averaged across 34 phenotypes and 10,000 – K participants in the test meta-set. The boxplots 

represent 100 random repeats of K participants (K-shot). Bootstrapping was utilized to derive 

p values (Figure 3B; Figure S4; see Methods). Multiple comparisons were corrected using 

false discovery rate (FDR, q < 0.05). Both basic meta-matching algorithms were significantly 

better than the classical (KRR) approach across all sample sizes (Figure 3B). The 

improvements were large. For example, in the case of 20-shot (a typical sample size for many 

fMRI studies), basic meta-matching (DNN) was more than 100% better than classical (KRR): 

0.124 ± 0.016 (mean ± std) versus 0.052 ± 0.007. Indeed, classical (KRR) required 200 

participants before achieving an accuracy (0.120 ± 0.005) comparable to basic meta-matching 

(DNN) with 20 participants.  

When utilizing coefficient of determinant (COD) as a metric of prediction 

performance (Figures S5 and S6), all algorithms performed poorly (COD ≤ 0) when there 

were 20 or less participants (K = 10 or 20), suggesting worse than chance prediction. When 

there were at least 50 participants (K ≥ 50), basic meta-matching algorithms became 

substantially better than classical (KRR) approach. However, the improvement was only 

statistically significant starting from around 100-200 participants.  

To summarize, basic meta-matching performed well even with 10 participants if the 

goal was ‘relative’ prediction (i.e., Pearson’s correlation49). However, if the goal was 

‘absolute’ prediction (i.e., COD7), then basic meta-matching required at least 100 participants 

to work well.  



 

2.3 Advanced meta-matching provides further improvement 

 We have demonstrated that basic meta-matching led to significant improvement over 

the classical (KRR) baseline. However, in practice, there might be significant differences 

between the training and test meta-sets, so simply picking the best phenotypic prediction 

model from the training meta-set might not generalize well to the test meta-set. Thus, we 

proposed two additional meta-matching approaches: ‘advanced meta-matching (finetune)’ 

and ‘advanced meta-matching (stacking)’.  

 As illustrated in Figure 2, the procedure for advanced meta-matching (finetune) is 

similar to basic meta-matching (DNN). Briefly, we trained a single DNN (with 33 outputs) on 

the training meta-set. We then applied the 33-output DNN to the K participants and picked 

the best DNN model for each test phenotype (out of 34 phenotypes). We then finetuned the 

top two layers of the DNN using the K participants before applying the finetuned model to 

the remaining 10,000 – K participants. See Methods for details. This approach can be thought 

of as complementing basic meta-matching with a simple form of transfer learning50. 

 In the case of advanced meta-matching (stacking), we trained a single DNN (with 33 

outputs) on the training meta-set. We then applied the 33-output DNN to the K participants, 

yielding 33 predictions per participant. The top M predictions are then used as features for 

predicting the phenotype of interest in the K participants using KRR. To reduce overfitting, 

M is set to be the minimum of 33 and K. For example, for the 10-shot scenario, M is set to be 

10. For the 50-shot scenario, M is set to be 33. The DNN (which was trained on the training 

meta-set) and KRR models (which were trained on the K participants) were then applied to 

the remaining 10,000 – K participants. See Methods for details. This approach can be thought 

of as complementing basic meta-matching with the classic stacking strategy51,52. 

 Figure 3A shows the prediction accuracies (Pearson's correlation coefficient) 

averaged across 34 phenotypes and 10,000 – K participants in the test meta-set. Both 

advanced meta-matching algorithms exhibited large and statistically significant 

improvements over classical (KRR) approach across all sample sizes (Figure 3B). For 

example, in the case of 20-shot, advanced meta-matching (stacking) was more than 100% 

better than classical (KRR): 0.133 ± 0.014 (mean ± std) versus 0.053 ± 0.007. Among the 

meta-matching algorithms, the advanced meta-matching algorithms were numerically better 

than the basic meta-matching algorithms from 20-shot onwards, but statistical significance 

was not achieved until around 100-shot onwards (Figure S4B).  



In the case of variance explained as measured by COD (Figures S5 and S6), all 

algorithms performed poorly (COD ≤ 0) when there were less than 50 participants (K < 50), 

suggesting chance or worse than chance prediction. From 50-shot onwards, advanced meta-

matching algorithms became statistically better than classical (KRR) approach (Figures S5B 

and S6B). The improvements were substantial. For example, in the case of 100-shot, 

advanced meta-matching (stacking) was 400% better than classical (KRR): 0.053 ± 0.005 

(mean ± std) versus 0.010 ± 0.004. Among the meta-matching algorithms, the advanced 

meta-matching algorithms were numerically better than the basic meta-matching algorithms 

from 100-shot onwards, but statistical significance was not achieved until 200-shot (Figure 

S6B). 

To summarize, advanced meta-matching performed well even with 10 participants if 

the goal was ‘relative’ prediction (i.e., Pearson’s correlation49). However, if the goal was 

‘absolute’ prediction (i.e., COD7), then advanced meta-matching required at least 50 

participants to work well. 

  

2.4 Correlations between phenotypes drive improvements 

Despite the substantial advantage of meta-matching over classical (KRR), not every 

phenotype benefited from meta-matching. For example, in the case of 100-shot, the average 

performance (Pearson’s correlation) of classical (KRR) and advanced meta-matching 

(stacking) were 0.097 ± 0.006 (mean ± std) and 0.183 ± 0.007, respectively. This represented 

an average absolute gain of 0.086 (min = -0.023, max = 0.266) across 34 test phenotypes. In 

the case of COD, there was an average absolute gain of 0.043 (min = -0.012, max = 0.268) 

across test 34 phenotypes. 

Figures 4 illustrates the 100-shot prediction performance (Pearson's correlation 

coefficient) of four test meta-set phenotypes across all approaches. Figure S7 shows the same 

plot for COD. For three of the phenotypes (average weekly beer plus cider intake, symbol 

digit substitution and matrix pattern completion), meta-matching demonstrated substantial 

improvements over classical (KRR). In the case of the last phenotype (time spent driving per 

day), meta-matching did not yield any statistically significant improvement.  

Given that meta-matching exploits correlations among phenotypes, we hypothesized 

that variability in prediction improvements were driven by inter-phenotype correlations 

between the training and test meta-sets (Figures 1B & S1B). Figure 5 shows the performance 

improvement (Pearson’s correlation) as a function of the maximum correlation between each 

test phenotype and training phenotypes. Figure S8 shows the same plot for COD. As 



expected, test phenotypes with stronger correlations with at least one training phenotype led 

to greater prediction improvement with meta-matching. Despite the small number of 

participants employed in the K-shot scenarios, Figure S9 shows that most of the time, meta-

matching was able to select training phenotypes that were strongly correlated with the test 

phenotypes. Interestingly, phenotypes that were better predicted by classical (KRR) also 

benefited more from meta-matching (Figures S10 and S11).  

 

2.5 Human Connectome Project (HCP) experiment setup 

The previous analysis (Figure 3) suggests that meta-matching can perform well in the 

UK Biobank. However, both training and test meta-sets were drawn from the same dataset. 

To demonstrate that meta-matching can generalize well to a completely new dataset from a 

different MRI scanner with distinct demographics and pre-processing, we considered data 

from the Human Connectome Project (HCP47). There were several important differences 

between the HCP and UK Biobank, including age (22 to 35 in the HCP versus 40 to 69 in the 

UK Biobank), preprocessing (grayordinate combined surface-volume coordinate system in 

the HCP versus MNI152 coordinate system in the UK Biobank) and scanners (highly 

customized Skyra scanner in the HCP versus ‘off-the-shelf’ Skyra scanners in the UK 

Biobank).  

We note that 55 x 55 RSFC matrices were not available in the HCP dataset, so the 

following analyses utilized 419 x 419 RSFC matrices from both UK Biobank and HCP. The 

training meta-set comprised 36,847 UK Biobank participants with 419 x 419 RSFC matrices 

and 67 phenotypes (Figure 6A). The test meta-set comprised 1,019 HCP participants with 

419 x 419 RSFC matrices and 35 phenotypes (Figure 6A). The 35 HCP phenotypes were 

winnowed down from 58 phenotypes by excluding phenotypes that were not predictable in 

the full HCP dataset (see Methods for more details). Given that KRR was applied to the 

entire HCP dataset to select the final set of phenotypes, we note that this procedure is biased 

in favor of the KRR baseline.  

 Overall, the experimental setup (Figure 6) was the same as the UK Biobank analyses 

(Figures 1 and 2), except for the choice of training and test meta-sets. In addition, basic meta-

matching (DNN) and advanced meta-matching (stacking) were the most promising 

approaches among the basic and advanced meta-matching approaches respectively in the UK 

Biobank (Figure 3), so we will focus on these two approaches. 

 



2.6 Meta-matching outperforms classical KRR in the HCP 

Figure 7A shows the prediction accuracies (Pearson's correlation coefficient) 

averaged across 35 phenotypes and 1,019 – K participants in the HCP test meta-set. The 

boxplots represent 100 random repeats of K participants (K-shot). Bootstrapping was used to 

derive p values (Figure 7B; Figure S12; see Methods). Multiple comparisons were corrected 

using false discovery rate (FDR, q < 0.05). The results were very similar to experiment 1. 

Both meta-matching algorithms were significantly better than the classical (KRR) approach 

for 20-shot and above (Figure 7B). The improvements were large. For example, in the case of 

20-shot (a typical sample size for many fMRI studies), basic meta-matching (DNN) was more 

than 100% better than classical (KRR): 0.123 ± 0.028 (mean ± std) versus 0.047 ± 0.016. 

Advanced meta-matching (stacking) was numerically (but not statistically) better than basic 

meta-matching (DNN). 

In the case of explained variance measured by COD (Figures S13 and S14), all 

algorithms performed poorly (COD ≤ 0) when there were 10 participants (K = 10), 

suggesting worse than chance prediction. When there were at least 50 participants (K ≥ 50), 

basic meta-matching (DNN) became substantially better than classical (KRR) approach. 

However, the improvement was only statistically significant when there were at least 100 

participants (K ≥ 100). On the other hand, advanced meta-matching (stacking) was 

statistically better than classical (KRR) when there were at least 20 participants (K ≥ 20). 

Again, the improvements were substantial. For example, in the case of 100-shot, advanced 

meta-matching (stacking) was 800% better than classical (KRR): 0.045 ± 0.005 (mean ± std) 

versus 0.005 ± 0.006. 

However, similar to the UK Biobank, despite the substantial advantage of meta-

matching over classical (KRR), not every phenotype benefited from meta-matching. For 

example, in the case of 100-shot, the average performance (Pearson’s correlation) of classical 

(KRR) and advanced meta-matching (stacking) were 0.112 ± 0.011 (mean ± std) and 0.192 ± 

0.008. This represented an average absolute gain of 0.081 (min = -0.029, max = 0.189) across 

35 test phenotypes. In the case of COD, there was an average absolute gain of 0.040 (min = -

0.002, max = 0.160) across 35 test phenotypes. 

 

2.7 Interpreting meta-matching with the Haufe transform 

 The primary goal of our study is to improve phenotypic prediction. However, a 

pertinent question is whether interpretation of the resulting meta-matching models might be 

biased by pre-trained predictive models. Most previous studies have interpreted the 



regression weights or selected features of predictive models, which could be highly 

misleading53. Here, we consider the Haufe’s transform53 that yields a positive (or negative) 

predictive-feature value for each RSFC edge. A positive (or negative) predictive-feature 

value indicates that higher RSFC for the edge was associated with the predictive model 

predicting greater (or lower) value for the phenotype. We refer to the outputs of the Haufe 

transform as predictive network features (PNFs). 

 We will focus on the 100-shot scenario. First, for each HCP phenotype, we derived 

pseudo ground truth PNFs by training a KRR model on the full HCP dataset (N = 1,019) and 

then applied the Haufe transform to the KRR model. We then computed PNFs for various 

approaches to compare against the ground truth. In the case of classical (KRR), we trained 

the KRR model on 100 random HCP participants (i.e., 100-shot) and then computed the 

PNFs. In the case of basic meta-matching (DNN) and advanced meta-matching (stacking), we 

translated the trained UK Biobank model on the 100 HCP participants using meta-matching 

and then computed the PNFs. We also computed PNFs by applying the Haufe transform to 

the trained UK Biobank model using UK Biobank RSFC data and the best phenotype selected 

by basic meta-matching (DNN), which we will refer to as ‘basic meta-matching (DNN) 

training’. We then correlated the resulting PNFs with the ground-truth PNFs. This procedure 

was repeated 100 times and correlations with the ground truth was averaged across the 100 

repetitions. 

It is important to note that the pseudo ground truth was derived using KRR, which is 

therefore biased towards classical (KRR). Nevertheless, as shown in Figure 8, we found that 

advanced meta-matching (stacking) was numerically closer to the ‘ground truth’ than the 

PNFs from classical (KRR), although the difference was not statistically significant. On the 

other hand, PNFs from advanced meta-matching (stacking) was statistically closer to the 

pseudo ground truth than basic meta-matching (DNN) and basic meta-matching (DNN) 

training.  

 

 

  



3. DISCUSSION 

In this study, we proposed ‘meta-matching’, a simple framework to effectively 

translate predictive models from large-scale datasets to new phenotypes in small data. Using 

a large sample of almost 40,000 participants from the UK Biobank, we demonstrated that 

meta-matching can dramatically boost prediction performance in the small-sample scenario. 

We also demonstrated that the DNN trained on the UK Biobank can be translated well to the 

HCP dataset from a different scanner with different demographics and preprocessing. 

Overall, our results suggest that meta-matching will be extremely helpful for boosting the 

predictive power in small-scale boutique studies focusing on specific neuroscience questions 

or clinical populations.   

 

3.1 Interpretation of meta-matching 

Given that meta-matching exploits correlations among phenotypes, the prediction 

mechanism might potentially be non-causal. However, we note that the primary goal of this 

study is to improve phenotypic prediction. There are many applications, where prediction 

performance is inherently useful1,54 even if the prediction is achieved via potentially non-

causal routes. For example, antidepressants take at least four weeks to start working and less 

than 50% of patients respond well to the first drug prescribed to them. Therefore, improving 

the ability to predict the best depression treatment is clinically useful even if the prediction 

mechanism is potentially ‘confounded’. 

Furthermore, exploiting phenotypic correlations for prediction does not imply that the 

prediction is necessarily confounded. Related behaviors (e.g., negative affect, low mood, 

anxiety, etc) are often correlated because of common underlying neurobiology. Exploiting 

such correlational structure to improve prediction is entirely appropriate. For example, 

translating a negative affect predictive model from a large-scale database to improve anxiety 

prediction in patients with post-traumatic stress disorder should not be considered as 

confounding.  

There are situations where phenotypic correlations should be considered confounds, 

but whether a variable is a confound or not, is highly dependent on the goal of a study. For 

example, age is causally related to Alzheimer’s Disease dementia. However, if a study is 

interested in dementia risks above and beyond aging, then age becomes a confound. 

Therefore, all observational studies (including studies using meta-matching) should carefully 

consider what are confounds (or not) on a case-by-case manner. Overall, we believe that 



handling confounds in meta-matching, while an important consideration, is no different from 

other observational studies. 

To illustrate how confounding phenotypes might be handled in meta-matching, let us 

focus on advanced meta-matching (stacking). If a researcher believes a-priori that a particular 

training phenotype (e.g., age) is a confound for the prediction of a test phenotype (e.g., 

Alzheimer’s Disease), then the researcher can regress the training phenotype (e.g., age) from 

the variables in the training meta-set before training. The researcher can also regress the 

predicted training phenotype (e.g., predicted age) from the other predicted variables in the K 

participants (in the test meta-set) before performing stacking. Alternatively, the stacking 

model can be interpreted (e.g., using the Haufe transform) to infer the extent to which 

different training phenotypes (e.g., age) contributed to the prediction of the test phenotype 

(e.g., AD). The researcher can then reason whether the prediction mechanism is confounded 

or not in the specific application.    

Our results (Figure 8) also suggest that meta-matching models are not less 

interpretable than classical approaches in terms of predictive network features extracted by 

the Haufe transform. However, both classical (KRR) and advanced meta-matching (stacking) 

only exhibited moderate similarity with the pseudo ground truth (correlation ≈ 0.4), 

suggesting that interpreting predictive models built on small datasets remains an open 

research question not just in neuroscience but also in machine learning.  

Finally, it is worth noting that the Haufe transform was developed to interpret linear 

predictive (discriminative) models, so it is directly applicable to KRR given our choice of a 

linear kernel. Application of the Haufe transform to advanced meta-matching (stacking) is 

equivalent to seeking a linear interpretation of the nonlinear model53 (see equation 8 of 

reference), which might therefore provide an incomplete interpretation. 

 

3.2 Meta-matching model 1.0 

 The full UK Biobank DNN model (trained with 36,847 participants and 67 

phenotypes) is made publicly available as part of this study. We will refer to this model as 

‘meta-matching model 1.0’. To illustrate its use, let us consider a hypothetical new study with 

100 participants.  

The researcher should first validate the meta-matching approach on their data by 

adapting meta-matching model 1.0 on 80 random participants (using meta-matching stacking) 

and testing on the remaining 20 participants. This procedure can be repeated multiple times 

and an average performance can be computed. Assuming the resulting prediction 



performance is satisfactory, the researcher can then move on to the next step, which is 

dependent on the goal of the researcher. 

 If the goal is to obtain prediction for the 100 participants, for each participant, the 

researcher can first translate the meta-matching model to the other 99 participants (i.e., 99-

shot) and then use the model to predict the phenotype of the left-out participant. On the other 

hand, if the goal is to predict new participants beyond the 100 participants, the researcher can 

adapt the meta-matching model to all 100 participants (i.e., 100-shot). This final adapted 

model can then be applied to new participants beyond the 100 participants. Furthermore, the 

researcher can also interpret the final adapted model for new insights into the brain, e.g., by 

using the Haufe transform53.  

 

3.3 Absolute versus relative prediction performance 

We note that a variety of prediction performance measures have been utilized in the 

literature. For studies interested in relative ranking41,49, Pearson’s correlation is a common 

performance metric. We showed that if Pearson’s correlation was used as a performance 

metric, meta-matching performed very well even with as few as 10 participants (Figure 3). 

Thus, if the experimenter’s goal is relative ranking, then our experiments suggest that meta-

matching is superior regardless of sample sizes.  

However, others have strongly argued in favor of absolute prediction performance7. In 

this scenario, COD is a common performance metric that measures variance explained by the 

predictive algorithm. In the case of the UK Biobank, advanced meta-matching dramatically 

outperformed classical (KRR) in terms of COD, when there were at least 50 participants 

(Figure S5). In the case of the HCP dataset, advanced meta-matching dramatically 

outperformed classical (KRR) in terms of COD, when there were at least 20 participants 

(Figure S14). Thus, our experiments suggest that absolute prediction is unlikely to be 

successful with less than 20 participants and should not be considered a realistic goal.  

 

3.4 Limitations & future work 

Although the core idea behind meta-matching is to exploit correlations among 

phenotypes, we note that the resulting algorithms leverage on several closely related ideas in 

machine learning, including meta-learning, multi-task learning and transfer learning17. For 

example, the use of a single neural network to predict all phenotypes simultaneously is 

known as multi-task learning55. The finetuning component of advanced meta-matching 

(finetune) can be thought of as a simple version of network-based transfer learning50. 



Similarly, advanced meta-matching (stacking) seeks to exploit the benefits of ‘averaging’ 

predictions51,52 on top of the core idea of meta-matching. However, it is worth noting that the 

largest gain in performance (e.g., K = 100-shot in Figures 3 and 7) comes from the core idea 

of meta-matching. The additional machine learning techniques (e.g., finetuning and stacking) 

do further boost performance, but at a smaller magnitude. Nevertheless, it is possible that 

more advanced machine learning approaches can further boost performance. This is a 

promising avenue for future work.  

Because meta-matching exploits correlations between training and test meta-sets, the 

amount of prediction improvement strongly relied on the strongest correlations between the 

test phenotype and training phenotypes (Figure 5). Consequently, not all phenotypes 

benefited from meta-matching. For example, in the case of 100-shot in the HCP dataset, the 

prediction performance of advanced meta-matching (stacking) was numerically worse for 4 

of the 35 phenotypes (in the case of Pearson’s correlation) and 2 of the 35 phenotypes (in the 

case of COD). However, it is important to note that this limitation exists for all meta-learning 

and transfer learning algorithms – model transfer is easier if the source and target domains 

are more similar; performance will degrade if source and target domains are very different.  

While initial large-scale projects target young healthy adults, a growing number of 

large-scale population-level datasets are targeting different populations, including elderly, 

children, lifespan and different disorders. These newer datasets will likely include rarer 

phenotypes specific to the target populations. This suggests that phenotypic diversity will 

continue to grow, which would increase the probability of some phenotypes in some large-

scale datasets being correlated with a new phenotype of interest in a smaller dataset. An 

example of future work would be to develop a meta-matching model based on the ABCD 

dataset, which includes mental health symptoms, such as the child behavioral checklist 

(CBCL).  

We also note that the UK Biobank does have a large number of mental health 

measures. However, many of these measures are binary yes/no questions, which might not be 

sufficiently ‘rich’ for imaging-based prediction. Consequently, these measures were filtered 

out in our current study. Recent studies have begun to synthesize more meaningful mental 

health summary measures that are better correlated with brain imaging features56. As future 

work, we hope to build on such efforts, which would allow us to either include these mental 

health summary measures into an omnibus meta-matching model (that predict a wider variety 

of phenotypes) or to build a meta-matching model specialized for mental health. 



Nevertheless, it is likely the case that some rare phenotypes will not be able to benefit from 

meta-matching.  

 

ACKNOWLEDGMENT 

We like to thank Christine Annette, Taimoor Akhtar, Li Zhenhua for their help on the HORD 

algorithm. This work was supported by the Singapore National Research Foundation (NRF) 

Fellowship Class of 2017 (B.T.T.Y.), the NUS Yong Loo Lin School of Medicine 

NUHSRO/2020/124/TMR/LOA (B.T.T.Y.), the Singapore National Medical Research 

Council (NMRC) LCG OFLCG19May-0035 (B.T.T.Y.), the NMRC STaR20nov-0003 

(B.T.T.Y.), Healthy Brains Healthy Lives initiative from the Canada First Research 

Excellence Fund (D.B.), the Canada Institute for Advanced Research CIFAR Artificial 

Intelligence Chairs program (D.B.), Google Research Award (D.B.), United States National 

Institutes of Health (NIH) R01AG068563A (D.B.), NIH R01MH120080 (A.J.H.) and NIH 

R01MH123245 (A.J.H.). Any opinions, findings and conclusions or recommendations 

expressed in this material are those of the author(s) and do not reflect the views of the 

Singapore NRF or NMRC. Our computational work was partially performed on resources of 

the National Supercomputing Centre, Singapore (https://www.nscc.sg). The Titan Xp GPUs 

used for this research were donated by the NVIDIA Corporation. This research has been 

conducted using the UK Biobank resource under application 25163 and Human Connectome 

Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil 

Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH 

Blueprint for Neuroscience Research; and by the McDonnell Center for Systems 

Neuroscience at Washington University.  

 

AUTHOR CONTRIBUTIONS STATEMENT 

T.H., L.A., P.C., J.C., J.F., D.B., A.J.H., S.B.E. and B.T.T.Y. designed the research. T.H. 

conducted the research. T.H., L.A., P.C., J.C., J.F., D.B., A.J.H., S.B.E. and B.T.T.Y. 

interpreted the results. T.H. and B.T.T.Y. wrote the manuscript and made the figures. T.H., 

L.A. and P.C. reviewed and published the code. All authors contributed to project direction 

via discussion. All authors edited the manuscript.  



COMPETING INTERESTS STATEMENT 

The authors declare no competing interests. 

 

FIGURE LEGENDS/CAPTIONS 

Figure 1. Experimental setup for meta-matching in the UK Biobank. The goal of meta-

matching is to translate predictive models from big datasets to new unseen phenotypes in 

independent small datasets. (A) The UK Biobank dataset (Jan 2020 release) was divided into 

a training meta-set comprising 26,848 participants and 33 phenotypes, and a test meta-set 

comprising independent 10,000 participants and 34 other phenotypes. It is important to 

emphasize that no participant or phenotype overlapped between training and test meta-sets. 

The test meta-set was in turn split into K participants (K = 10, 20, 50, 100, 200) and 

remaining 10,000-K participants. The group of K participants mimicked studies with 

traditionally common sample sizes. This split was repeated 100 times for robustness. (B) 

Absolute Pearson’s correlations between phenotypes in training and test metasets. Each row 

represents one test meta-set phenotype. Each column represents one training meta-set 

phenotype. Figures S2 and S3 show correlation plots for phenotypes within training and test 

meta-sets. Dictionary of phenotypes is found in Tables S1 and S2.  

 

Figure 2. Application of basic and advanced meta-matching to the UK Biobank. The 

meta-matching framework can be instantiated using different machine learning algorithms. 

Here, we incorporated kernel ridge regression (KRR) and fully-connected feedforward deep 

neural network (DNN) within the meta-matching framework. We proposed two classes of 

meta-matching algorithms: basic and advanced. In the case of basic meta-matching, we 

considered two variants: basic meta-matching (KRR) and basic meta-matching (DNN). In the 

case of advanced meta-matching, we considered two variants: advanced meta-matching 

(finetune) and advanced meta-matching (stacking). Both advanced meta-matching variants 

utilized the DNN. See text for more details. 

 

Figure 3. Meta-matching reliably outperforms predictions from classical kernel ridge 

regression (KRR) in the UK Biobank. (A) Prediction performance (Pearson's correlation) 

averaged across 34 phenotypes in the test meta-set (N = 10,000 – K). The K participants were 

used to train and tune the models (Figure 2). Boxplots represent variability across 100 

random repeats of K participants (Figure 1A). Whiskers represent 1.5 inter-quartile range. (B) 

Statistical difference between the prediction performance (Pearson’s correlation) of classical 

(KRR) baseline and meta-matching algorithms. P values were calculated based on a two-

sided bootstrapping procedure (see Methods). "*" indicates p < 0.05 and statistical 

significance after multiple comparisons correction (FDR q < 0.05). "**" indicates p < 0.001 

and statistical significance after multiple comparisons correction (FDR q < 0.05). "***" 

indicates p < 0.00001 and statistical significance after multiple comparisons correction (FDR 

q < 0.05). “n.s.” indicates no statistical significance (p ≥ 0.05) or did not survive FDR 

correction. Green color indicates that meta-matching methods were statistically better than 

classical (KRR). The actual p values and statistical comparisons among all algorithms are 

found in Figure S4. Prediction performance measured using coefficient of determination 

(COD) is found in Figure S5. 

 

Figure 4. Examples of phenotypic prediction performance in the test meta-set (N = 

9,900) in the case of 100-shot learning. Here, prediction performance was measured using 



Pearson’s correlation. "Alcohol 3" (average weekly beer plus cider intake) was most 

frequently matched to "Bone C3" (bone-densitometry of heel principal component 3). "Digit-

o C1" (symbol digit substitution online principal component 1) was most frequently matched 

to "Matrix C1" (matrix pattern completion principal component 1). "Breath C1" (spirometry 

principal component 1) was most frequently matched to "Grip C1" (hand grip strength 

principal component 1). "Time drive" (Time spent driving per day) was most frequently 

matched to "BP eye C3" (blood pressure & eye measures principal component 3). For each 

boxplot, the horizontal line indicates the median and the black triangle indicates the mean. 

The bottom and top edges of the box indicate the 25th and 75th percentiles respectively. 

Whiskers correspond to 1.5 times the interquartile range. Outliers are defined as data points 

beyond 1.5 times the interquartile range. Figure S7 shows an equivalent figure using 

coefficient of determination (COD) as the prediction performance measure. 

 

Figure 5. Prediction improvements were driven by correlations between training and 

test meta-set phenotypes. Vertical axis shows the prediction improvement of advanced 

meta-matching (stacking) with respect to classical (KRR) baseline under the 100-shot 

scenario. Prediction performance was measured using Pearson’s correlation. Each dot 

represents a test meta-set phenotype. Horizontal axis shows each test phenotype’s top 

absolute Pearson’s correlation with phenotypes in the training meta-set. Test phenotypes with 

stronger correlations with at least one training phenotype led to greater prediction 

improvement with meta-matching. Similar conclusions were obtained with coefficient of 

determination (Figure S8). 

 

Figure 6. Experiment setup for meta-matching in the Human Connectome Project 

(HCP). (A) The training meta-set comprised 36,847 UK Biobank participants and 67 

phenotypes. The test meta-set comprised 1,019 HCP participants and 36 phenotypes. It is 

important to emphasize that no participant or phenotype overlapped between training and test 

meta-sets. The test meta-set was in turn split into K participants (K = 10, 20, 50, 100, 200) 

and remaining 1,019-K participants. This split was repeated 100 times for robustness. (B) 

Application of basic and advanced meta-matching to the HCP dataset. Here, we considered 

basic meta-matching (DNN) and advanced meta-matching (stacking). 

 

Figure 7. Meta-matching reliably outperforms classical kernel ridge regression (KRR) 

in the HCP. (A) Prediction performance (Pearson's correlation) averaged across 35 

phenotypes in the test meta-set (N = 1,019 – K). The K participants were used to train and 

tune the models (Figure 6B). Boxplots represent variability across 100 random repeats of K 

participants (Figure 6A). For each boxplot, the horizontal line indicates the median and the 

black triangle indicates the mean. The bottom and top edges of the box indicate the 25th and 

75th percentiles respectively. Whiskers correspond to 1.5 times the interquartile range. 

Outliers are defined as data points beyond 1.5 times the interquartile range. (B) Statistical 

difference between the prediction performance (Pearson’s correlation) of classical (KRR) 

baseline and meta-matching algorithms. P values were calculated based on a two-sided 

bootstrapping procedure (see Methods). "*" indicates p < 0.05 and statistical significance 

after multiple comparisons correction (FDR q < 0.05). "**" indicates p < 0.001 and statistical 

significance after multiple comparisons correction (FDR q < 0.05). "***" indicates p < 

0.00001 and statistical significance after multiple comparisons correction (FDR q < 0.05). 

“n.s.” indicates no statistical significance (p ≥ 0.05) or did not survive FDR correction. The 

actual p values and statistical comparisons among all algorithms are found in Figure S12. 

Prediction performance measured using coefficient of determination (COD) is found in 



Figure S13. Green color indicates that meta-matching methods were statistically better than 

classical (KRR). 

 

Figure 8. Agreement (correlation) of predictive network features with pseudo ground 

truth in the HCP dataset. For both meta-matching (stacking) and classical (KRR), the 

Haufe transform53 was utilized to estimate predictive network features (PNFs) in the 100-shot 

scenario (N = 100). Pseudo ground truth PNFs were generated by applying the Haufe 

transform to a KRR model trained from the full HCP dataset (N = 1,019). PNFs was also 

estimated for basic meta-matching (DNN) training based on the UK Biobank (N = 29,477). 

We found that the PNFs derived from meta-matching (stacking) and classical (KRR) 

achieved similar agreement with pseudo ground truth. For each boxplot, the horizontal line 

indicates the median and the black triangle indicates the mean. The bottom and top edges of 

the box indicate the 25th and 75th percentiles respectively. Whiskers correspond to 1.5 times 

the interquartile range. Outliers are defined as data points beyond 1.5 times the interquartile 

range. 
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4. METHODS 

4.1 Datasets 

This study utilized data from two datasets: the UK Biobank25,46 and the Human 

Connectome Project47. Our analyses were approved by the National University of Singapore 

Institutional Review Board.  

The UK Biobank (under UK Biobank resource application 25163) is a population 

epidemiology study with 500,000 adults (age 40-69) recruited between 2006 and 201046. A 

subset of 100,000 participants is being recruited for multimodal imaging, including brain 

MRI, e.g., structural MRI and resting-state fMRI (rs-fMRI) from 2016 to 202225,46,57,58. A 

wide range of non-brain-imaging phenotypes was acquired for each participant. Here, we 

considered the January 2020 release of 37,848 participants with structural MRI and rs-fMRI. 

Structural MRI (1.0mm isotropic) and rs-fMRI (2.4mm isotropic) were acquired at four 

imaging centers (Bristol, Cheadle Manchester, Newcastle, and Reading) with harmonized 

Siemens 3T Skyra MRI scanners. Each participant has one rs-fMRI run with 490 frames (6 

minutes) and a TR of 0.735s. 

The Human Connectome Project (HCP) S1200 release comprised 1,094 young 

healthy adults (age 22 to 35) with preprocessed rs-fMRI data59–61. A number of non-brain-



imaging phenotypes was acquired for each participant. For each participant, structural MRI 

(0.7mm isotropic) and rs-fMRI (2mm isotropic) were acquired at Washington University at 

St. Louis with a customized Siemens 3T Connectome Skyra MRI scanner. Each participant 

has two rs-fMRI sessions. Each session has two rs-fMRI runs with 1200 frames (14.4 

minutes) each and a TR of 0.72s. 

 

4.2 Brain imaging data 

In the case of the UK Biobank analyses (Figures 1 to 5), we utilized 55 x 55 RSFC 

(partial correlation62) matrices from data-field 25753 of the UK Biobank25,58. Data-field 

25753 RSFC had 100 whole-brain spatial independent component analysis (ICA) derived 

components63. After the removal of 45 artifactual components, as indicated by the UKB team, 

55 components were left25. Data-field 25753 contains two instances, first imaging visit 

(instance 2) and first repeat imaging visit (instance 3). The first imaging visit (instance 2) had 

RSFC data for 37,848 participants, while the first repeat imaging visit (instance 3) only had 

RSFC data for 1,493 participants. Here, we only considered RSFC from the first imaging 

visit (instance 2). 

In the case of the analyses exploring model translation from the UK Biobank to the 

HCP (Figures 6 to 8), 55 x 55 RSFC matrices were not available in the HCP. Therefore, we 

considered 419 x 419 RSFC (Pearson’s correlation) matrices for both UK Biobank and HCP, 

consistent with previous studies from our group11,35,44. The 419 x 419 RSFC matrices were 

computed using 400 cortical64 and 19 sub-cortical65 parcels. In the case of the UK Biobank, 

ICA-FIX pre-processed volumetric rs-fMRI timeseries data58 was projected to MNI152 2mm 

template space. The timeseries were averaged within each cortical and each subcortical 

parcel. Pearson’s correlations were computed to generate the 419 x 419 RSFC matrices. In 

the case of the HCP, we utilized ICA-FIX MSMALL timeseries in the grayordinate 

(combined surface and subcortical volumetric) space66. The timeseries were averaged within 

each cortical and each subcortical parcel. Pearson’s correlations were computed to generate 

the 419 x 419 RSFC matrices. 

 

4.3 RSFC-based prediction setup 

Our meta-matching framework is highly flexible and can be instantiated with different 

machine learning algorithms. Here, we considered kernel ridge regression (KRR) and fully-

connected feedforward deep neural network (DNN), which we have previously demonstrated 

to work well for RSFC-based behavioral and demographics prediction11. As discussed in the 



previous section, each RSFC matrix was a symmetric N x N matrix, where N is the number 

of independent components or parcels. Here, N = 55 (Figures 1 to 5) or 419 (Figures 6 to 8). 

Each element represented the degree of statistical dependencies between two brain 

components. The lower triangular elements of the RSFC matrix of each participant were then 

vectorized and used as input features for KRR and DNN to predict individuals’ phenotypes. 

Kernel ridge regression67 is a non-parametric machine learning algorithm. This 

method is a natural choice as we previously demonstrated that KRR achieved similar 

prediction performance as several deep neural networks (DNNs) for the goal of RSFC-based 

behavioral and demographics prediction11. Roughly speaking, KRR predicts the phenotype 

(e.g., fluid intelligence) of a test participant by the weighted average of all training 

participants' phenotypes (e.g., fluid intelligence). The weights in the weighted average are 

determined by the similarity (i.e., kernel) between the test participant and training 

participants. In this study, similarity between two participants was defined as the Pearson's 

correlation between the vectorized lower triangular elements of their RSFC matrices. KRR 

also contains an 𝑙2 regularization term as part of the loss function to reduce overfitting. The 

hyperparameter λ is used to control the strength of the 𝑙2 regularization11,67. 

A fully-connected feedforward deep neural network (DNN) is one of the most 

classical DNNs68. We previously demonstrated that the feedforward DNN and KRR could 

achieve similar performance for RSFC-based behavioral and demographics prediction11. In 

this study, the DNN was trained based on the vectorized lower triangular elements of the 

RSFC matrix as input features and output the prediction of one or more non-brain-imaging 

phenotypes. The DNN consists of several fully connected layers. Each node (except input 

layer nodes) is connected to all nodes in the previous layer. The values at each node is the 

weighted sum of node values from the previous layer. For example, the value of each node in 

the first hidden layer is the weighted sum of all input FC values. The outputs of the hidden 

layer nodes go through a nonlinear activation function, Rectified Linear Units (ReLU; 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)). The output layer is linear. More details about hyperparameter tuning 

(e.g., number of layers and number of nodes per layer) are found in Supplemental Methods 

S1. We note that traditional deep convolutional neural networks are invalid for RSFC 

matrices, so are not utilized.  

 



4.4 Non-brain-imaging phenotype selection in the UK Biobank  

In the case of the UK Biobank, to obtain the final set of 67 non-brain-imaging 

phenotypes, we began by extracting all 3,937 unique phenotypes available to us under UK 

Biobank resource application 25163. We then performed three stages of selection and 

processing: 

1. In the first stage, we 

• Removed non-continuous and non-integer data fields (date and time converted to 

float), except for sex.  

• Removed Brain MRI phenotypes (category ID 100). 

• Removed first repeat imaging visit (instance 3).  

• Removed first two instances (instance 0 and 1) if first imaging visit (instance 2) 

exists and first imaging visit (instance 2) participants were more than double of 

participants from instance 0 or 1.  

• Removed first instance (instance 0) if only the first two instances (instance 0 and 

1) exist, and instance 1 participants were more than double of participants from 

instance 0.  

• Removed phenotypes for which less than 2000 participants had RSFC data.  

• Removed behaviors with the same value for more than 80% of participants.  

After the first stage of filtering, we were left with 701 phenotypes. 

2. We should not expect every phenotype to be predictable by RSFC. Therefore, in the 

second stage, our goal was to remove phenotypes that could not be well predicted 

even with large number of participants. More specifically,  

• We randomly selected 1000 participants from 37,848 participants. These 1000 

participants were completely excluded from the main experiments (Figure 1A). 

• Using these 1000 participants, kernel ridge regression (KRR) was utilized to 

predict each of the 701 phenotypes using RSFC. To ensure robustness, we 

performed 100 random repeats of training, validation, and testing (60%, 20%, and 

20%). For each repeat, KRR was trained on the training set and hyperparameters 

were tuned on the validation set. We then evaluated the trained KRR on the test 

set. phenotypes with an average test prediction performance (Pearson's 

correlation) less than 0.1 were removed.  

At the end of this second stage, 265 phenotypes were left. The list of selected and 

removed UK Biobank phenotypes can be found in Supplemental Methods S2. 



3. Many of the remaining phenotypes were highly correlated. For example, the bone 

density measurements of different body parts were highly correlated. Principal 

component analysis (PCA) was performed separately on each subgroup of highly 

similar phenotypes in the 1000-participant sample. Similarity was evaluated based on 

the UK Biobank-provided categories of item sets (i.e., items under the same category 

were considered highly similar). PCAs were not applied to 18 phenotypes (out of 265 

phenotypes), which were not similar to other phenotypes. For the purpose of carrying 

out PCA, missing values were filled in with the EM algorithm69. For each PCA, we 

kept enough components to explain 95% of the variance in the data or 6 components, 

whichever is lower. Overall, the PCA step reduced the 247 phenotypes (out of 265 

phenotypes) to 93 phenotypes. We then repeated the previous step (stage 2) on these 

93 phenotypes, resulting in 49 phenotypes with prediction performance (Pearson’s 

correlation) larger than 0.1. Adding back the 18 phenotypes that were not processed 

by PCA, we ended up with 67 phenotypes utilized in this manuscript. For the UK 

Biobank analyses (Figures 1 to 5), this PCA procedure was also applied separately to 

the training and test meta-sets. For model translation from UK Biobank to HCP 

(Figures 6 to 8), the PCA procedure was applied to all 36,848 participants. 

The final list of the phenotypes for UK Biobank is found in Tables S1 and S2. 

 

4.5 Non-brain-imaging phenotype selection in the HCP  

 In the case of HCP, we considered 58 non-brain-imaging phenotypes across 

cognition, emotion and personality, consistent with our previous studies11,44,70. Of the 1,094 

HCP participants, 1,019 participants had all 58 non-brain-imaging phenotypes. We performed 

KRR and 10-fold inner-loop nested cross-validation to predict each phenotype separately 

using RSFC. To ensure robustness, we performed 100 random repetitions of the 10-fold 

nested cross-validation procedure. Phenotypes with an average prediction performance 

(Pearson's correlation, averaged across 10 folds and 100 random repetitions) greater than 0.1 

were retained, yielding 35 phenotypes. The final list of 35 phenotypes is found in Table S3. 

Given that KRR was applied to the entire HCP dataset to select phenotypes, we note that this 

procedure is biased in favor of the KRR baseline. Therefore, the superior prediction 

performance of meta-matching (Figure 7) was even more noteworthy. 

 



4.6 Data split scheme in the UK Biobank analyses 

For the UK Biobank analyses (Figures 1 to 5), we considered 36,848 participants with 

55 x 55 RSFC matrices and 67 phenotypes. As illustrated in Figure 1A, we randomly split the 

data into two meta-sets: training meta-set with 26,848 participants and 33 phenotypes, and 

test meta-set with 10,000 participants and 34 phenotypes. There was no overlap between the 

participants and phenotypes across the two meta-set. Figure 1B shows the Pearson’s 

correlations between the training and test phenotypes. Figures S2 and S3 show correlation 

plots for phenotypes within training and test meta-sets. 

For the training meta-set, we further randomly split it into a training set with 21,478 

participants (80% of 26,848 participants) and validation set with 5370 participants (20% of 

26,848 participants). For the test meta-set, we randomly split 10,000 participants into K 

participants (K-shot) and 10,000 – K participants, where K had a value of 10, 20, 50, 100, 

and 200. The group of K participants mimicked traditional small-N studies. Each random K-

shot split was repeated 100 times to ensure stability. 

Z-normalization (transforming each variable to have zero mean and unit variance) 

was applied to the phenotypes. In the case of the training meta-set, z-normalization was 

performed by using the mean and standard deviation computed from the training set within 

the training meta-set. In the case of the test meta-set, for each of the 100 repeats of the K-shot 

learning, the mean and standard deviation were computed from the K participants and 

subsequently applied to the full test meta-set. 

 

4.7 Data split scheme in the HCP analyses  

 To translate predictive models from the UK Biobank to HCP, the test meta-set 

comprised 1,019 HCP participants with 419 x 419 RSFC matrices and 35 phenotypes (Figure 

6A). The training meta-set comprised 36,847 participants with 419 x 419 RSFC matrices and 

67 phenotypes from the UK Biobank. We further split the training meta-set into a training set 

with 29,477 participants (80% of 36,847 participants) and a validation set with 7,380 

participants (20% of 36,847 participants). For the test meta-set, we randomly split 1,019 

participants into K participants (K-shot) and 1,019 – K participants, where K had a value of 

10, 20, 50, 100, and 200. The group of K participants mimicked traditional small-N studies. 

Each random K-shot split was repeated 100 times to ensure stability. Similar to the UK 

Biobank analyses, z-normalization was applied to the phenotypes.   

 



4.8 Classical Kernel Ridge Regression (KRR) Baseline 

For the classical (KRR) baseline, we performed K-shot learning for each non-brain-

imaging phenotype in the test meta-set, using K participants from the random split (Figures 

1A and 6A). More specifically, for each phenotype, we performed 5-fold cross-validation on 

the K participants using different values of the hyperparameter λ (that controlled the strength 

of the 𝑙2 regularization). To choose the best hyperparameter, prediction performance was 

evaluated using the coefficient of determination (COD). The best hyperparameter λ was used 

to train the KRR model using all K participants. The trained KRR model was then applied to 

the remaining test participants, i.e., N = 10,000 - K in the case of Figures 1 to 5 and N = 

1,019 - K in the case of Figures 6 to 8. Prediction performance in the 10,000 - K (or 1,019 - 

K) test participants was measured using Pearson's correlation and COD. This procedure was 

repeated for each of the 100 random subsets of K participants.  

Note that when applied to the 10,000 - K (or 1,019 - K) participants, COD was 

defined as 1 − 
∑ (𝑦𝑖−𝑦̂𝑖)2

𝑖

∑ (𝑦𝑖−𝑦̅)2
𝑖

, where 𝑦𝑖 was the true target variable of the 𝑖-th participant (among 

the 10,000 - K participants), 𝑦̂𝑖 was the predicted target variable of the 𝑖-th participant and 𝑦̅ 

was the mean target variable in the training set (K participants). The best possible value for 

COD was 1. It was possible for COD to be less than 0, in which case, we were better off not 

using any imaging data for prediction. Instead, we could simply predict using the mean target 

variable in the training set, which would yield a COD of 0.  

 

4.9 Basic meta-matching  

The meta-matching framework is highly flexible and can be instantiated with different 

machine learning algorithms. Here, we incorporated kernel ridge regression (KRR) and fully-

connected feedforward deep neural network (DNN) within the meta-matching framework. 

We proposed two classes of meta-matching algorithms: basic and advanced. In the case of 

basic meta-matching, we considered two variants: “basic meta-matching (KRR)” and “basic 

meta-matching (DNN)” (Figures 2 and 6B).  

To ease our explanation of basic meta-matching, we will focus on the experimental 

setup for the UK Biobank analysis (Figures 1 to 5). In the case of basic meta-matching 

(KRR), we first trained a KRR to predict each training non-brain-imaging phenotype from 

RSFC. We used the training set (N = 21,478) within the training meta-set for training and 

validation set (N = 5,370) within the training meta-set for hyperparameter tuning. The 

hyperparameter λ was selected via a simple grid search. There were 33 phenotypes, so we 



ended up with 33 trained KRR models from the training meta-set. Second, we applied the 33 

trained KRR models to K participants (K-shot) from the test meta-set, yielding 33 predictions 

per participant. Third, for each test phenotype (out of 34 phenotypes), we picked the best 

KRR model (out of 33 models) that performed the best (as measured by COD) on the K 

participants. Finally, for each test phenotype, we applied the best KRR model to the 

remaining participants in the test meta-set (N = 10,000 – K). Prediction performance in the 

10,000 – K participants was measured using Pearson's correlation and COD. To ensure 

robustness, the K-shot procedure was repeated 100 times, each with a different set of K 

participants.  

In the case of basic meta-matching (DNN), we first trained one single DNN to predict 

all 33 training phenotypes from RSFC. In other words, the DNN outputs 33 predictions 

simultaneously. The motivation for a single multi-output DNN is to avoid the need to train 

and tune 33 single-output DNNs. We used the training set (N = 21478) within the training 

meta-set for training and validation set (N = 5370) within the training meta-set for 

hyperparameter tuning. Details of the hyperparameter tuning is found in Supplementary 

Methods S1. Second, we applied the trained DNN to the K participants (K-shot) from the test 

meta-set, yielding 33 different phenotypical predictions for each given participant. Third, for 

each test phenotype (out of 34 phenotypes), we picked the best output DNN node (out of 33 

output nodes) that generated the best prediction (as measured by COD) for the K participants. 

Finally, for each test phenotype, we applied the predictions from the best DNN output node 

on the remaining 10,000 – K participants in the test meta-set. Prediction performance in the 

10,000 – K participants was measured using Pearson's correlation and COD. To ensure 

robustness, the K-shot procedure was repeated 100 times, each with a different set of K 

participants.  

 

4.10 Advanced meta-matching  

There might be significant differences between the training and test meta-sets. 

Therefore, simply picking the best non-brain-imaging phenotypic prediction model estimated 

from the training meta-set might not generalize well to the test meta-set. Thus, we proposed 

two additional meta-matching approaches: “advanced meta-matching (finetune)” and 

“advanced meta-matching (stacking)” (Figures 2 and 6B). 

To ease our explanation of advanced meta-matching, we will focus on the 

experimental setup for the UK Biobank analysis (Figures 1 to 5). In the case of advanced 

meta-matching (finetune), we used the same multi-output DNN from basic meta-matching 



(DNN). Like before, for each test phenotype (out of 34 phenotypes), we picked the best 

output DNN node (out of 33 output nodes) that generated the best prediction (as measured by 

COD) for the K participants. We retained this best output node (while removing the 

remaining 32 nodes) and finetuned the DNN using the K participants (K-shot). More 

specifically, the K participants were randomly divided into training and validation sets using 

a 4:1 ratio. The training set was used to finetune the weights of the last two layers of the 

DNN, while the remaining weights were frozen. The validation set was used to determine the 

stopping criterion (in terms of the number of training epochs). The finetuned DNN was 

applied to the remaining 10,000 – K participants in the test meta-set. We note that the 

finetuning procedure was repeated separately for each of 33 test phenotypes. Prediction 

performance in the 10,000 – K participants was measured using Pearson's correlation and 

COD. To ensure robustness, the K-shot procedure was repeated 100 times, each with a 

different set of K participants. More details about the finetuning procedure can be found in 

Supplementary Methods S3.  

In the case of advanced meta-matching (stacking), we used the same multi-output 

DNN from basic meta-matching (DNN). The DNN was applied to the K participants (K-shot) 

from the test meta-set, yielding 33 predictions per participant. For each test phenotype (out of 

34 phenotypes), the best M predictions (as measured by COD) were selected. To reduce 

overfitting, M was set to be the minimum of K and 33. Thus, if K was smaller than 33, we 

considered the top K outputs from the multi-output DNN. If K was larger than 33, we 

considered all 33 outputs of the multi-output DNN. We then trained a kernel ridge regression 

(KRR) model using the M DNN outputs to predict the phenotype of interest in the K 

participants. The hyperparameter λ was tuned using grid search and 5-fold cross-validation 

on the K participants. The optimal λ was then used to train a final KRR model using all K 

participants. Finally, the KRR model was applied to the remaining 10,000 – K participants in 

the test meta-set. We note that this “stacking” procedure was repeated separately for each of 

33 test phenotypes. Prediction performance in the 10,000 – K participants was measured 

using Pearson's correlation and COD. To ensure robustness, the K-shot procedure was 

repeated 100 times, each with a different set of K participants.  

 

4.11 DNN implementation 

 The DNN was implemented using PyTorch71 and computed on NVIDIA Titan Xp 

GPUs using CUDA. More details about hyperparameter tuning are found in Supplementary 

Methods S1. More details about DNN finetuning are found in Supplementary Methods S3. 



 

4.12 Statistical tests 

To evaluate whether differences between algorithms were statistically significant, we 

adapted a bootstrapping approach developed for cross-validation procedures72 (see page 85 of 

reference). To ease our explanation of the bootstrapping procedure, we will focus on the 

experimental setup for the UK Biobank analysis (Figures 1 to 5). 

More specifically, we performed bootstrap sampling 1,000 times. For each bootstrap 

sample, we randomly picked K participants with replacement, while the remaining 10,000 – 

K participants were used as test participants. Thus, the main difference between our main 

experiments (100 repeats of K-shot learning in Figure 2A) and the bootstrapping procedure is 

that the bootstrapping procedure sampled participants with replacement, so the K 

bootstrapped participants might not be unique. For each of the 1,000 bootstrapped samples, 

we applied classical (KRR) baseline, basic meta-matching (KRR), basic meta-matching 

(DNN) and advanced meta-matching (stacking), thus yielding 1,000 bootstrapped samples of 

COD and Pearson's correlation (computed from the remaining 10,000 – K participants). 

Bootstrapping was not performed for advanced meta-matching (finetune) because 1000 

bootstrap samples would have required 60 days of compute time (on a single GPU). 

Statistical significance for COD and Pearson's correlation were calculated separately. 

For ease of explanation, let us focus on COD. The procedure for Pearson's correlation was 

exactly the same, except we replaced COD with Pearson's correlation in the computation. To 

compute the statistical difference between advanced meta-matching (finetune) and another 

algorithm X, we first fitted a Gaussian distribution to the 1,000 bootstrapped samples of COD 

from algorithm X, yielding a cumulative distribution function (CDFX). Suppose the average 

COD of advanced meta-matching (finetune) across the 100 random repeats of K-shot learning 

was µ. Then the p value was given by 2 * CDF(µ) if µ is less than the mean of the bootstrap 

distribution, or 2 * (1 - CDF(µ)) if µ is larger than the mean of bootstrap distribution. 

When computing the statistical difference between two algorithms X and Y with 1000 

bootstrapped samples each, we first fitted a Gaussian distribution to the 1,000 bootstrapped 

samples of COD from algorithm X, yielding a cumulative distribution function (CDFX). This 

was repeated for algorithm Y, yielding a cumulative distribution function (CDFY). Let the 

average COD of algorithm X (and Y) across the 100 random repeats of K-shot learning be µX 

(and µY). We can then compute a p value by comparing µX with CDFX and a p value by 

comparing µY with CDFY. The larger of the two p values was reported.  



P values were computed between all pairs of algorithms. Multiple comparisons were 

corrected using false discovery rate (FDR, q < 0.05). FDR was applied to all K-shots and 

across all pairs of algorithms. 

 

4.13 Haufe transform 

We used the Haufe transform to evaluate the interpretability of meta-matching in the 

100-shot scenario. For a predictive model with RSFC as input and phenotype as output, the 

Haufe transform computes a positive (or negative) value for each RSFC edge. A positive (or 

negative) value indicates that higher RSFC value was associated with predicting greater (or 

lower) phenotypic value. We refer to the outputs of the Haufe transform as predictive 

network features (PNFs). 

First, for each HCP phenotype (out of 35 phenotypes), we derived pseudo ground 

truth PNFs using the full HCP dataset (N = 1,019). More specifically, we performed five-fold 

cross-validation to find the best hyperparameter for KRR. We then trained a KRR model with 

the best hyperparameter using all 1,019 HCP participants. The trained KRR model was 

applied to the 1,019 participants to predict the phenotype. The Haufe transform was defined 

as the covariance between the phenotypic prediction and each RSFC edge (across the 1,019 

participants). Therefore, a separate covariance value was produced for each phenotype and 

each RSFC edge. The final PNF matrix was of size 87,571 x 35, with 87571 being the 

number of unique elements in the 419 x 419 FC matrix (that is 419 x 418 / 2) and 35 being 

the number of HCP phenotypes. 

Second, we computed PNFs for various approaches (in the 100-shot scenario) to compare 

against the ground truth. In the case of ‘classical (KRR)’, for each HCP phenotype, we 

trained a KRR model on 100 random HCP participants with the best hyperparameter 

(obtained from five-fold cross-validation on the same 100 participants). The trained KRR 

model was applied to predict the phenotype on the same 100 participants. Again, the Haufe 

transform was defined as the covariance between the phenotypic prediction and each RSFC 

edge (across the 100 participants). This procedure was repeated 100 times with different 

random samples of 100 participants. The PNFs were then averaged across the 100 repetitions. 

The final PNF matrix was of size 87,571 x 35. The procedure was repeated for ‘basic meta-

matching (DNN)’ and ‘advanced meta-matching (stacking)’, yielding a PNF matrix (of size 

87,571 x 35) for each approach. 

Finally, in the case of ‘basic meta-matching (DNN) training’, recall that we have 

previously trained a DNN to predict 67 phenotypes in the UK Biobank training set (N = 



29,477; Fig. 6A). We applied the trained DNN to predict the 67 phenotypes in the UK 

Biobank training set. For each phenotype, we computed the covariance between the 

phenotypic prediction and each RSFC edge (across the 29,477 participants). This produced a 

PNF matrix of size 87,571 x 67 from the UK Biobank. For each HCP phenotype (out of 35 

phenotypes), we found the most frequently matched UK Biobank phenotype based on 100 

repetitions of basic meta-matching (DNN) from the previous paragraph. The PNFs of the 

HCP phenotype were set to be equal to the PNFs of this most frequently matched UK 

Biobank phenotype. Therefore, this procedure also yielded a PNF matrix of size 87,571 x 35. 

 

4.14 Computational costs of meta-matching 

Meta-matching comprises two stages: training on the training meta-set and meta-

matching on new non-brain-imaging phenotypes in the K participants (K-shot). Training and 

hyperparameter tuning on the training meta-set is slow, but only has to be performed once. 

For example, in our study, training the DNN with automatic hyperparameter tuning using the 

HORD algorithm73–75 on a single graphics processing unit (GPU) took about 2 days. In the 

case of both basic meta-matching algorithms, meta-matching on new non-brain-imaging 

phenotypes is extremely fast because it only requires forward passes through a neural 

network (in the case of DNN) or matrix multiplications (in the case of KRR). More 

specifically, the second stage for basic meta-matching algorithms took less than 0.1 second 

for a single test meta-set phenotype and one K-shot.  In the case of advanced meta-matching 

(stacking), there is an additional step of training a KRR model on the K participants. 

Nevertheless, the second stage for advanced meta-matching (stacking) only took 0.5 second 

for a single meta-set phenotype and one K-shot. On the other hand, the computational cost for 

finetuning the DNN for advanced meta-matching (finetune) is a lot more substantial, 

requiring about ~30 seconds for a single test meta-set phenotype and one K-shot. Although 

30 seconds might seem quite fast, repeating the K-shot 100 times for all values of K and 34 

meta-set phenotypes required 6 full days of computational time. 

 

4.15 Data availability 

This study utilized publicly available data from the UK Biobank 

(https://www.ukbiobank.ac.uk/) and HCP (https://www.humanconnectome.org/). Data can be 

accessed via data use agreements.  

 

https://www.ukbiobank.ac.uk/
https://www.humanconnectome.org/


4.15 Code availability 

Code for the classical (KRR) baseline and meta-matching algorithms can be found 

here 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/He

2022_MM). The trained models for meta-matching (i.e., Meta-matching model 1.0) are also 

publicly available (https://github.com/ThomasYeoLab/Meta_matching_models). The code 

was reviewed by two co-authors (LA and PC) before merging into the GitHub repository to 

reduce the chance of coding errors. 

  



REFERENCES (METHODS) 

46. Sudlow, C. et al. UK Biobank: An Open Access Resource for Identifying the Causes 

of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 12, 1–10 

(2015). 

47. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: An overview. 

Neuroimage 80, 62–79 (2013). 

48. Varoquaux, G. et al. Assessing and tuning brain decoders: Cross-validation, caveats, 

and guidelines. Neuroimage 145, 166–179 (2017). 

49. Scheinost, D. et al. Ten simple rules for predictive modeling of individual differences 

in neuroimaging. Neuroimage 193, 35–45 (2019). 

50. Tan, C. et al. A survey on deep transfer learning. Int. Conf. Artif. neural networks 

11141 LNCS, 270–279 (2018). 

51. Breiman, L. Stacked regressions. Mach. Learn. 24, 49–64 (1996). 

52. Wolpert, D. Stacked Generalization. Neural Networks 5, 241–259 (1992). 

53. Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate 

neuroimaging. Neuroimage 87, 96–110 (2014). 

54. Rosenberg, M. D., Casey, B. J. & Holmes, A. J. Prediction complements explanation 

in understanding the developing brain. Nat. Commun. 9, 1–13 (2018). 

55. Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. (2017). 

56. Dutt, R. K. et al. Mental health in the UK Biobank: A roadmap to self-report measures 

and neuroimaging correlates. Hum. Brain Mapp. 1–17 (2021) doi:10.1002/hbm.25690. 

57. Elliott, P. & Peakman, T. C. The UK Biobank sample handling and storage protocol 

for the collection, processing and archiving of human blood and urine. Int. J. 

Epidemiol. 37, 234–244 (2008). 

58. Alfaro-Almagro, F. et al. Image processing and Quality Control for the first 10,000 

brain imaging datasets from UK Biobank. Neuroimage 166, 400–424 (2018). 

59. Van Essen, D. C. et al. The Human Connectome Project: A data acquisition 

perspective. Neuroimage 62, 2222–2231 (2012). 

60. Barch, D. M. et al. Function in the human connectome: Task-fMRI and individual 

differences in behavior. Neuroimage 80, 169–189 (2013). 

61. Smith, S. M. et al. Resting-state fMRI in the Human Connectome Project. Neuroimage 

80, 144–168 (2013). 

62. Smith, S. M. et al. Network modelling methods for FMRI. Neuroimage 54, 875–891 

(2011). 



63. Beckmann, C. F. & Smith, S. M. Probabilistic Independent Component Analysis for 

Functional Magnetic Resonance Imaging. IEEE Trans. Med. Imaging 23, 137–152 

(2004). 

64. Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from 

Intrinsic Functional Connectivity MRI. Cereb. Cortex 3095–3114 (2018) 

doi:10.1093/cercor/bhx179. 

65. Fischl, B. et al. Whole brain segmentation: Automated labeling of neuroanatomical 

structures in the human brain. Neuron 33, 341–355 (2002). 

66. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome 

Project. Neuroimage 80, 105–124 (2013). 

67. Murphy, K. P. Machine Learning: A Probabilistic Perspective. MIT Press (2012). 

68. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). 

69. Seabold, S. & Perktold, J. Statsmodels: Econometric and Statistical Modeling with 

Python. PROC. 9th PYTHON Sci. CONF 57 (2010). 

70. Kong, R. et al. Spatial Topography of Individual-Specific Cortical Networks Predicts 

Human Cognition, Personality, and Emotion. Cereb. Cortex 29, 2533–2551 (2019). 

71. Paszke, A. et al. Automatic differentiation in PyTorch. Adv. Neural Inf. Process. Syst. 

30 1–4 (2017). 

72. Kuhn, M. & Johnson, K. Applied predictive modeling. Applied Predictive Modeling 

(2013). doi:10.1007/978-1-4614-6849-3. 

73. Ilievski, I., Akhtar, T., Feng, J. & Shoemaker, C. A. Efficient hyperparameter 

optimization of deep learning algorithms using deterministic RBF surrogates. in 31st 

AAAI Conference on Artificial Intelligence, AAAI 2017 822–829 (2017). 

74. Regis, R. G. & Shoemaker, C. A. Combining radial basis function surrogates and 

dynamic coordinate search in high-dimensional expensive black-box optimization. 

Eng. Optim. 45, 529–555 (2013). 

75. Eriksson, D., Bindel, D. & Shoemaker, C. A. pysot: Surrogate Optimization Toolbox. 

GitHub https://github.com/dme65/pySOT (2019). 

 



Training set (N = 21478) Validation set (N = 5370)

N = 10000 participants

K participants (K-shot) Remaining test participants 
(N = 10000 – K)

Repeat 
100 times

No overlapping 
participant or 

phenotype

Training Meta-set: N = 26848, 33 non-brain-imaging phenotypes

Test Meta-set: N = 10000, 34 non-brain-imaging phenotypes

(A)

(B)

Bo
ne

 C
3

Se
x

Se
x 

G
 C

2
Bo

dy
 C

1
EC

G
 C

1
G

rip
 C

1
EC

G
 C

6
#

M
em

 C
1

M
at

rix
 C

1
M

at
rix

 C
2

Fl
ui

d 
In

t.
Bo

dy
 C

2
Se

x 
G

 C
1

Bo
ne

 C
1

EC
G

 C
2

Bo
dy

 C
3

BP
 e

ye
 C

2
Ill

ne
ss

 C
1

BP
 e

ye
 C

4
#

ho
us

eh
ol

d
BP

 e
ye

 C
6

BP
 e

ye
 C

3
H

ea
rin

g
EC

G
 C

3
M

at
rix

 C
3

G
en

et
ic

 C
1

BP
 e

ye
 C

5
Sl

ee
p

Ti
m

e 
w

al
k

Ill
ne

ss
 C

4
Ti

m
e 

TV
U

rin
e 

C1
Sm

ok
e 

C1

Training meta-set non-brain-imaging phenotypes

Blood C2
Breath C1

Age
Cancer C1

RT C1
Trail-o C1

Match-o
Trail C1

Digit-o C1
Digit 1

Tower C1
Blood C4
Alcohol 3

Dur C4
Carotid C1

Blood C5
Family C1

Time drive
Travel
Work

Match
ProMem C1

Trail-o C4
Digit-o C6
Blood C3
Alcohol 2

Dur C2
Carotid C5

Neuro
Alcohol 1

Dur C1
Loc C1

Age edu
Deprive C1

Te
st

 m
et

a-
se

t n
on

-b
ra

in
-im

ag
in

g 
ph

en
ot

yp
es

0.0 0.3
Absolute Correlation



Train Kernel Ridge Regression (KRR) / Fully-Connected Deep Neural Network (DNN) to 
predict 33 non-brain-imaging phenotypes in training meta-set (N=26848)

Apply trained KRR/DNN to K participants (K-shot) from test meta-set yielding 33 
predictions per participant

For each of 34 non-brain-imaging phenotypes in test 
meta-set, pick best prediction (out of 33) that performs 

the best in K participants (K-shot)
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brain-imaging 

phenotypes, evaluate 
best KRR / DNN 
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For each of 34 non-
brain-imaging 

phenotypes, finetune 
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prediction) on K 
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