000907839 001__ 907839
000907839 005__ 20230123110622.0
000907839 0247_ $$2doi$$a10.1002/adfm.202202714
000907839 0247_ $$2ISSN$$a1057-9257
000907839 0247_ $$2ISSN$$a1099-0712
000907839 0247_ $$2ISSN$$a1616-301X
000907839 0247_ $$2ISSN$$a1616-3028
000907839 0247_ $$2Handle$$a2128/31711
000907839 0247_ $$2WOS$$aWOS:000794043200001
000907839 037__ $$aFZJ-2022-02238
000907839 041__ $$aEnglish
000907839 082__ $$a530
000907839 1001_ $$00000-0002-5978-8213$$aPries, Julian$$b0
000907839 245__ $$aFragile-to-Strong Transition in Phase-Change Material Ge3Sb6Te5
000907839 260__ $$aWeinheim$$bWiley-VCH$$c2022
000907839 3367_ $$2DRIVER$$aarticle
000907839 3367_ $$2DataCite$$aOutput Types/Journal article
000907839 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661317701_27640
000907839 3367_ $$2BibTeX$$aARTICLE
000907839 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907839 3367_ $$00$$2EndNote$$aJournal Article
000907839 520__ $$aChalcogenide phase-change materials combine a remarkable set of properties that makes them promising candidates for future non-volatile memory applications. Binary data storage exploits the high contrast in electrical and optical properties between the covalent amorphous and metavalent crystalline phase. Here the authors perform an analysis of the liquid phase kinetics of the phase-change material Ge3Sb6Te5, which is the key to ultrafast switching speeds. By employing four experimental techniques, the viscosity is measured over sixteen orders of magnitude despite its propensity for fast crystallization. These measurements reveal that the liquid undergoes a transition in viscosity–temperature dependence associated with a liquid–liquid phase transition. The system exhibits a shallow viscosity change with temperature near the glass transition which stabilizes the memory cells in the amorphous state and which limits the severity of relaxation processes. Meanwhile, when heated during the writing process, the fragility increases to more than double, causing the viscosity to drop rapidly enabling a nanosecond crystallization speed. This change in viscosity–temperature dependence is highly unusual among glass forming liquids and is reminiscent of the behavior of water. This viscosity transition is also key to the technological success of phase-change materials for computer memory applications.
000907839 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000907839 588__ $$aDataset connected to DataCite
000907839 7001_ $$0P:(DE-HGF)0$$aWeber, Hans$$b1
000907839 7001_ $$0P:(DE-HGF)0$$aBenke-Jacob, Julia$$b2
000907839 7001_ $$0P:(DE-HGF)0$$aKaban, Ivan$$b3
000907839 7001_ $$0P:(DE-HGF)0$$aWei, Shuai$$b4
000907839 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b5$$eCorresponding author
000907839 7001_ $$0P:(DE-HGF)0$$aLucas, Pierre$$b6
000907839 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202202714$$gp. 2202714 -$$n31$$p2202714 -$$tAdvanced functional materials$$v32$$x1057-9257$$y2022
000907839 8564_ $$uhttps://juser.fz-juelich.de/record/907839/files/Adv%20Funct%20Materials%20-%202022%20-%20Pries%20-%20Fragile%E2%80%90to%E2%80%90Strong%20Transition%20in%20Phase%E2%80%90Change%20Material%20Ge3Sb6Te5.pdf$$yOpenAccess
000907839 909CO $$ooai:juser.fz-juelich.de:907839$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907839 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b5$$kFZJ
000907839 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000907839 9141_ $$y2022
000907839 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000907839 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000907839 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000907839 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000907839 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000907839 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907839 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000907839 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000907839 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000907839 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-15
000907839 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000907839 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000907839 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2021$$d2022-11-15
000907839 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15
000907839 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15
000907839 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2021$$d2022-11-15
000907839 920__ $$lyes
000907839 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000907839 980__ $$ajournal
000907839 980__ $$aVDB
000907839 980__ $$aUNRESTRICTED
000907839 980__ $$aI:(DE-Juel1)PGI-10-20170113
000907839 9801_ $$aFullTexts