TY  - JOUR
AU  - Ran, Ke
AU  - Zeng, Fanlin
AU  - Fischer, Liudmila
AU  - Baumann, Stefan
AU  - Meulenberg, Wilhelm Albert
AU  - Neuhaus, Kerstin
AU  - Mayer, Joachim
TI  - The in situ generated emerging phase inside dual phase oxygen transport membranes
JO  - Acta materialia
VL  - 234
SN  - 1359-6454
CY  - Amsterdam [u.a.]
PB  - Elsevier Science
M1  - FZJ-2022-02262
SP  - 118034
PY  - 2022
AB  - The in situ generated emerging phase inside the dual-phase oxygen transport membranes (DP-OTMs) plays a crucial role in boosting the overall performance of DP-OTMs. However, its detailed structure and properties are still not fully understood. Utilizing advanced transmission electron microscopy (TEM) techniques, the emerging phase GdxCe1-xFeyCo1-yO3-δ (GCFCO) inside the CexGd1-xO2-δ-FeCo2O4 (CGO-FC2O) OTMs was successfully characterized at the atomic scale. The newly formed GCFCO is primarily surrounded by the CGO, and contributes to a significant reduction of non-solute segregation at the CGO grain boundaries. Electronic characteristics of the GCFCO shows a sensitive dependence on its chemical composition, including the valence state of Ce and Fe as well as the oxygen vacancies. Additional CGO-GCFCO interfaces were introduced, where almost intact crystal structures were observed with slight Gd and Co segregation ∼1 nm at the edges. Approaching the interface, on the CGO side, only a minimum drop of the Ce valence was determined. On the GCFCO side, mixed Ce3+ and Ce4+ are partially occupying the Gd sites, while Fe and Co valence stay constant until the edge. Our study provides novel insight into the phase information within CGO-FC2O composites, which paves the path towards superior performance of various DP-OTMs
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000805863600001
DO  - DOI:10.1016/j.actamat.2022.118034
UR  - https://juser.fz-juelich.de/record/907873
ER  -