000907874 001__ 907874
000907874 005__ 20230307151610.0
000907874 0247_ $$2doi$$a10.3390/s22114040
000907874 0247_ $$2Handle$$a2128/31234
000907874 0247_ $$2pmid$$a35684663
000907874 0247_ $$2WOS$$aWOS:000808626000001
000907874 037__ $$aFZJ-2022-02263
000907874 041__ $$aEnglish
000907874 082__ $$a620
000907874 1001_ $$0P:(DE-Juel1)185971$$aAlia, Ahmed$$b0$$eFirst author$$ufzj
000907874 245__ $$aA Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics
000907874 260__ $$aBasel$$bMDPI$$c2022
000907874 3367_ $$2DRIVER$$aarticle
000907874 3367_ $$2DataCite$$aOutput Types/Journal article
000907874 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1659442441_31558
000907874 3367_ $$2BibTeX$$aARTICLE
000907874 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907874 3367_ $$00$$2EndNote$$aJournal Article
000907874 500__ $$aPilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027) (01DH16027)"
000907874 520__ $$aCrowded event entrances could threaten the comfort and safety of pedestrians, especially when some pedestrians push others or use gaps in crowds to gain faster access to an event. Studying and understanding pushing dynamics leads to designing and building more comfortable and safe entrances. Researchers—to understand pushing dynamics—observe and analyze recorded videos to manually identify when and where pushing behavior occurs. Despite the accuracy of the manual method, it can still be time-consuming, tedious, and hard to identify pushing behavior in some scenarios. In this article, we propose a hybrid deep learning and visualization framework that aims to assist researchers in automatically identifying pushing behavior in videos. The proposed framework comprises two main components: (i) Deep optical flow and wheel visualization; to generate motion information maps. (ii) A combination of an EfficientNet-B0-based classifier and a false reduction algorithm for detecting pushing behavior at the video patch level. In addition to the framework, we present a new patch-based approach to enlarge the data and alleviate the class imbalance problem in small-scale pushing behavior datasets. Experimental results (using real-world ground truth of pushing behavior videos) demonstrate that the proposed framework achieves an 86% accuracy rate. Moreover, the EfficientNet-B0-based classifier outperforms baseline CNN-based classifiers in terms of accuracy.
000907874 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000907874 588__ $$aDataset connected to DataCite
000907874 7001_ $$0P:(DE-HGF)0$$aMaree, Mohammed$$b1$$eCorresponding author
000907874 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b2$$eCorresponding author$$ufzj
000907874 770__ $$aAdvances in Deep-Learning-Based Sensing, Imaging, and Video Processing
000907874 773__ $$0PERI:(DE-600)2052857-7$$a10.3390/s22114040$$gVol. 22, no. 11, p. 4040 -$$n11$$p4040$$tSensors$$v22$$x1424-8220$$y2022
000907874 8564_ $$uhttps://juser.fz-juelich.de/record/907874/files/Ahmed-Dl4PuDe.pdf$$yOpenAccess
000907874 8767_ $$d2022-07-28$$eAPC$$jZahlung erfolgt$$zOABLE
000907874 909CO $$ooai:juser.fz-juelich.de:907874$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185971$$aForschungszentrum Jülich$$b0$$kFZJ
000907874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b2$$kFZJ
000907874 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000907874 9141_ $$y2022
000907874 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000907874 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907874 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000907874 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000907874 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907874 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000907874 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSORS-BASEL : 2021$$d2022-11-25
000907874 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000907874 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000907874 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-25T08:37:47Z
000907874 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-25T08:37:47Z
000907874 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-25T08:37:47Z
000907874 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000907874 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000907874 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000907874 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-25
000907874 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000907874 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000907874 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000907874 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000907874 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907874 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907874 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000907874 920__ $$lyes
000907874 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000907874 980__ $$ajournal
000907874 980__ $$aVDB
000907874 980__ $$aI:(DE-Juel1)IAS-7-20180321
000907874 980__ $$aAPC
000907874 980__ $$aUNRESTRICTED
000907874 9801_ $$aAPC
000907874 9801_ $$aFullTexts