001     907874
005     20230307151610.0
024 7 _ |a 10.3390/s22114040
|2 doi
024 7 _ |a 2128/31234
|2 Handle
024 7 _ |a 35684663
|2 pmid
024 7 _ |a WOS:000808626000001
|2 WOS
037 _ _ |a FZJ-2022-02263
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Alia, Ahmed
|0 P:(DE-Juel1)185971
|b 0
|e First author
|u fzj
245 _ _ |a A Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1659442441_31558
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027) (01DH16027)"
520 _ _ |a Crowded event entrances could threaten the comfort and safety of pedestrians, especially when some pedestrians push others or use gaps in crowds to gain faster access to an event. Studying and understanding pushing dynamics leads to designing and building more comfortable and safe entrances. Researchers—to understand pushing dynamics—observe and analyze recorded videos to manually identify when and where pushing behavior occurs. Despite the accuracy of the manual method, it can still be time-consuming, tedious, and hard to identify pushing behavior in some scenarios. In this article, we propose a hybrid deep learning and visualization framework that aims to assist researchers in automatically identifying pushing behavior in videos. The proposed framework comprises two main components: (i) Deep optical flow and wheel visualization; to generate motion information maps. (ii) A combination of an EfficientNet-B0-based classifier and a false reduction algorithm for detecting pushing behavior at the video patch level. In addition to the framework, we present a new patch-based approach to enlarge the data and alleviate the class imbalance problem in small-scale pushing behavior datasets. Experimental results (using real-world ground truth of pushing behavior videos) demonstrate that the proposed framework achieves an 86% accuracy rate. Moreover, the EfficientNet-B0-based classifier outperforms baseline CNN-based classifiers in terms of accuracy.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Maree, Mohammed
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 2
|e Corresponding author
|u fzj
770 _ _ |a Advances in Deep-Learning-Based Sensing, Imaging, and Video Processing
773 _ _ |a 10.3390/s22114040
|g Vol. 22, no. 11, p. 4040 -
|0 PERI:(DE-600)2052857-7
|n 11
|p 4040
|t Sensors
|v 22
|y 2022
|x 1424-8220
856 4 _ |u https://juser.fz-juelich.de/record/907874/files/Ahmed-Dl4PuDe.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907874
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185971
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132077
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SENSORS-BASEL : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-25T08:37:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-25T08:37:47Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-25T08:37:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-25
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21