000907880 001__ 907880
000907880 005__ 20230128125811.0
000907880 0247_ $$2doi$$a10.1021/acsami.2c00648
000907880 0247_ $$2ISSN$$a1944-8244
000907880 0247_ $$2ISSN$$a1944-8252
000907880 0247_ $$2Handle$$a2128/31430
000907880 0247_ $$2pmid$$a35604777
000907880 0247_ $$2WOS$$aWOS:000820787400001
000907880 037__ $$aFZJ-2022-02264
000907880 082__ $$a600
000907880 1001_ $$00000-0003-2377-2268$$aDittrich, Jonas$$b0
000907880 245__ $$aRational Design Yields Molecular Insights on Leaf-Binding of Anchor Peptides
000907880 260__ $$aWashington, DC$$bSoc.$$c2022
000907880 3367_ $$2DRIVER$$aarticle
000907880 3367_ $$2DataCite$$aOutput Types/Journal article
000907880 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674829003_23400
000907880 3367_ $$2BibTeX$$aARTICLE
000907880 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907880 3367_ $$00$$2EndNote$$aJournal Article
000907880 520__ $$aIn times of a constantly growing world population and increasing demand for food, sustainable agriculture is crucial. The rainfastness of plant protection agents is of pivotal importance to reduce the amount of applied nutrients, herbicides, and fungicides. As a result of protective agent wash-off, plant protection is lost, and soils and groundwater are severely polluted. To date, rainfastness of plant protection products has been achieved by adding polymeric adjuvants to the agrochemicals. However, polymeric adjuvants will be regarded as microplastics in the future, and environmentally friendly alternatives are needed. Anchor peptides (APs) are promising biobased and biodegradable adhesion promoters. Although the adhesion of anchor peptides to artificial surfaces, such as polymers, has already been investigated in theory and experimentally, exploiting the adhesion to biological surfaces remains challenging. The complex nature and composition of biological surfaces such as plant leaves and fruit surfaces complicate the generation of accurate models. Here, we present the first detailed three-layered atomistic model of the surface of apple leaves and use it to compute free energy profiles of the adhesion and desorption of APs to and from that surface. Our model is validated by a novel fluorescence-based microtiter plate (MTP) assay that mimics these complex processes and allows for quantifying them. For the AP Macaque Histatin, we demonstrate that aromatic and positively charged amino acids are essential for binding to the waxy apple leaf surface. The established protocols should generally be applicable for tailoring the binding properties of APs to biological interfaces.
000907880 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000907880 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000907880 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x2
000907880 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x3
000907880 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x4
000907880 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907880 7001_ $$00000-0003-4794-0203$$aBrethauer, Christin$$b1
000907880 7001_ $$0P:(DE-HGF)0$$aGoncharenko, Liudmyla$$b2
000907880 7001_ $$0P:(DE-HGF)0$$aBührmann, Jens$$b3
000907880 7001_ $$0P:(DE-HGF)0$$aZeisler-Diehl, Viktoria$$b4
000907880 7001_ $$0P:(DE-HGF)0$$aPariyar, Shyam$$b5
000907880 7001_ $$0P:(DE-HGF)0$$aJakob, Felix$$b6
000907880 7001_ $$0P:(DE-HGF)0$$aKurkina, Tetiana$$b7
000907880 7001_ $$0P:(DE-HGF)0$$aSchreiber, Lukas$$b8
000907880 7001_ $$00000-0003-4026-701X$$aSchwaneberg, Ulrich$$b9
000907880 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b10$$eCorresponding author
000907880 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.2c00648$$gp. acsami.2c00648$$n25$$p28412–28426$$tACS applied materials & interfaces$$v14$$x1944-8244$$y2022
000907880 8564_ $$uhttps://juser.fz-juelich.de/record/907880/files/Manuskript_Anchor_v19_revision2_final.pdf$$yPublished on 2022-05-23. Available in OpenAccess from 2023-05-23.
000907880 8564_ $$uhttps://juser.fz-juelich.de/record/907880/files/acsami.2c00648.pdf$$yRestricted
000907880 909CO $$ooai:juser.fz-juelich.de:907880$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907880 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b10$$kFZJ
000907880 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000907880 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000907880 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x2
000907880 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x3
000907880 9141_ $$y2022
000907880 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000907880 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000907880 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000907880 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000907880 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000907880 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000907880 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-11
000907880 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000907880 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000907880 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2021$$d2022-11-11
000907880 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS APPL MATER INTER : 2021$$d2022-11-11
000907880 920__ $$lyes
000907880 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
000907880 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000907880 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000907880 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x3
000907880 980__ $$ajournal
000907880 980__ $$aVDB
000907880 980__ $$aI:(DE-Juel1)IBG-4-20200403
000907880 980__ $$aI:(DE-Juel1)JSC-20090406
000907880 980__ $$aI:(DE-Juel1)NIC-20090406
000907880 980__ $$aI:(DE-Juel1)IBI-7-20200312
000907880 980__ $$aUNRESTRICTED
000907880 9801_ $$aFullTexts