000907881 001__ 907881
000907881 005__ 20230307151434.0
000907881 0247_ $$2doi$$a10.3390/electronics11111704
000907881 0247_ $$2Handle$$a2128/31226
000907881 0247_ $$2WOS$$aWOS:000808712800001
000907881 037__ $$aFZJ-2022-02265
000907881 041__ $$aEnglish
000907881 082__ $$a530
000907881 1001_ $$0P:(DE-Juel1)130633$$aFaley, M. I.$$b0$$eCorresponding author
000907881 245__ $$aA Self-Flux-Biased NanoSQUID with Four NbN-TiN-NbN Nanobridge Josephson Junctions
000907881 260__ $$aBasel$$bMDPI$$c2022
000907881 3367_ $$2DRIVER$$aarticle
000907881 3367_ $$2DataCite$$aOutput Types/Journal article
000907881 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1653897540_1544
000907881 3367_ $$2BibTeX$$aARTICLE
000907881 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907881 3367_ $$00$$2EndNote$$aJournal Article
000907881 520__ $$aWe report the development of a planar 4-Josephson-junction nanoscale superconducting quantum interference device (nanoSQUID) that is self-biased for optimal sensitivity without the application of a magnetic flux of Φ0/4. The nanoSQUID contains novel NbN-TiN-NbN nanobridge Josephson junctions (nJJs) with NbN current leads and electrodes of the nanoSQUID body connected by TiN nanobridges. The optimal superconducting transition temperature of ~4.8 K, superconducting coherence length of ~100 nm, and corrosion resistance of the TiN films ensure the hysteresis-free, reproducible, and long-term stability of nJJ and nanoSQUID operation at 4.2 K, while the corrosion-resistant NbN has a relatively high superconducting transition temperature of ~15 K and a correspondingly large energy gap. FIB patterning of the TiN films and nanoscale sculpturing of the tip area of the nanoSQUID’s cantilevers are performed using amorphous Al films as sacrificial layers due to their high chemical reactivity to alkalis. A cantilever is realized with a distance between the nanoSQUID and the substrate corner of ~300 nm. The nJJs and nanoSQUID are characterized using Quantum Design measurement systems at 4.2 K. The technology is expected to be of interest for the fabrication of durable nanoSQUID sensors for low temperature magnetic microscopy, as well as for the realization of more complex circuits for superconducting nanobridge electronics.
000907881 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000907881 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x1
000907881 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907881 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, R. E.$$b1
000907881 773__ $$0PERI:(DE-600)2662127-7$$a10.3390/electronics11111704$$gVol. 11, no. 11, p. 1704 -$$n11$$p1704 -$$tElectronics$$v11$$x2079-9292$$y2022
000907881 8564_ $$uhttps://juser.fz-juelich.de/record/907881/files/electronics-11-01704.pdf$$yOpenAccess
000907881 8767_ $$d2022-07-28$$eAPC$$jZahlung erfolgt$$zOABLE
000907881 909CO $$ooai:juser.fz-juelich.de:907881$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ
000907881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b1$$kFZJ
000907881 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000907881 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1
000907881 9141_ $$y2022
000907881 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000907881 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907881 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000907881 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000907881 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907881 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000907881 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTRONICS-SWITZ : 2021$$d2022-11-24
000907881 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-24
000907881 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-24
000907881 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-19T09:43:04Z
000907881 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-19T09:43:04Z
000907881 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-19T09:43:04Z
000907881 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-24
000907881 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-24
000907881 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-24
000907881 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-24
000907881 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000907881 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907881 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907881 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000907881 920__ $$lyes
000907881 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000907881 9801_ $$aFullTexts
000907881 980__ $$ajournal
000907881 980__ $$aVDB
000907881 980__ $$aUNRESTRICTED
000907881 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000907881 980__ $$aAPC