001     907887
005     20230626203243.0
024 7 _ |a 10.1007/s00018-022-04153-0
|2 doi
024 7 _ |a 0014-4754
|2 ISSN
024 7 _ |a 1420-682X
|2 ISSN
024 7 _ |a 1420-9071
|2 ISSN
024 7 _ |a 2128/31376
|2 Handle
024 7 _ |a altmetric:124549749
|2 altmetric
024 7 _ |a pmid:35253091
|2 pmid
024 7 _ |a WOS:000765169100001
|2 WOS
037 _ _ |a FZJ-2022-02267
082 _ _ |a 610
100 1 _ |a Vlasov, Alexey V.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a ATP synthase FOF1 structure, function, and structure-based drug design
260 _ _ |a Cham (ZG)
|c 2022
|b Springer International Publishing AG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674828476_23400
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)—the universal “currency”, which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FOF1) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential. Although the key subunits of the enzyme remain highly conserved, subunit composition and structural organization of ATP synthases and their assemblies are significantly different. In addition, there are hypotheses that the enzyme might be involved in the formation of the mitochondrial permeability transition pore and play a role in regulation of the cell death processes. Dysfunctions of this enzyme lead to numerous severe disorders with high fatality levels. In our review, we focus on FOF1-structure-based approach towards development of new therapies by using FOF1 structural features inherited by the representatives of this enzyme family from different taxonomy groups. We analyzed and systematized the most relevant information about the structural organization of FOF1 to discuss how this approach might help in the development of new therapies targeting ATP synthases and design tools for cellular bioenergetics control.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Osipov, Stepan D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bondarev, Nikolay A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Uversky, Vladimir N.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Borshchevskiy, Valentin
|0 P:(DE-Juel1)191126
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Yanyushin, Mikhail F.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Manukhov, Ilya V.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rogachev, Andrey V.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Vlasova, Anastasiia D.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ilyinsky, Nikolay S.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kuklin, Alexandr I.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Dencher, Norbert A.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Gordeliy, Valentin I.
|0 P:(DE-Juel1)131964
|b 12
773 _ _ |a 10.1007/s00018-022-04153-0
|g Vol. 79, no. 3, p. 179
|0 PERI:(DE-600)1458497-9
|n 3
|p 179
|t Cellular and molecular life sciences
|v 79
|y 2022
|x 0014-4754
856 4 _ |u https://juser.fz-juelich.de/record/907887/files/Vlasov2022_Article_ATPSynthaseFOF1StructureFuncti.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907887
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)191126
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131964
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
|d 2022-11-11
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21