000907890 001__ 907890
000907890 005__ 20240712113056.0
000907890 0247_ $$2doi$$a10.1002/advs.202201116
000907890 0247_ $$2Handle$$a2128/31574
000907890 0247_ $$2pmid$$a35474449
000907890 0247_ $$2WOS$$aWOS:000787737100001
000907890 037__ $$aFZJ-2022-02269
000907890 082__ $$a624
000907890 1001_ $$0P:(DE-HGF)0$$aWrogemann, Jens Matthies$$b0
000907890 245__ $$aAdvanced Dual‐Ion Batteries with High‐Capacity Negative Electrodes Incorporating Black Phosphorus
000907890 260__ $$aWeinheim$$bWiley-VCH$$c2022
000907890 3367_ $$2DRIVER$$aarticle
000907890 3367_ $$2DataCite$$aOutput Types/Journal article
000907890 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658909479_11504
000907890 3367_ $$2BibTeX$$aARTICLE
000907890 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907890 3367_ $$00$$2EndNote$$aJournal Article
000907890 520__ $$aDual-graphite batteries (DGBs), being an all-graphite-electrode variation of dual-ion batteries (DIBs), have attracted great attention in recent years as a possible low-cost technology for stationary energy storage due to the utilization of inexpensive graphite as a positive electrode (cathode) material. However, DGBs suffer from a low specific energy limited by the capacity of both electrode materials. In this work, a composite of black phosphorus with carbon (BP-C) is introduced as negative electrode (anode) material for DIB full-cells for the first time. The electrochemical behavior of the graphite || BP-C DIB cells is then discussed in the context of DGBs and DIBs using alloying anodes. Mechanistic studies confirm the staging behavior for anion storage in the graphite positive electrode and the formation of lithiated phosphorus alloys in the negative electrode. BP-C containing full-cells demonstrate promising electrochemical performance with specific energies of up to 319 Wh kg–1 (related to masses of both electrode active materials) or 155 Wh kg–1 (related to masses of electrode active materials and active salt), and high Coulombic efficiency. This work provides highly relevant insights for the development of advanced high-energy and safe DIBs incorporating BP-C and other high-capacity alloying materials in their anodes.
000907890 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000907890 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907890 7001_ $$0P:(DE-HGF)0$$aHaneke, Lukas$$b1
000907890 7001_ $$00000-0001-5605-4639$$aRamireddy, Thrinathreddy$$b2
000907890 7001_ $$0P:(DE-HGF)0$$aFrerichs, Joop Enno$$b3
000907890 7001_ $$0P:(DE-HGF)0$$aSultana, Irin$$b4
000907890 7001_ $$0P:(DE-HGF)0$$aChen, Ying Ian$$b5
000907890 7001_ $$0P:(DE-HGF)0$$aBrink, Frank$$b6
000907890 7001_ $$0P:(DE-HGF)0$$aHansen, Michael Ryan$$b7
000907890 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b8
000907890 7001_ $$00000-0002-4851-839X$$aGlushenkov, Alexey M.$$b9$$eCorresponding author
000907890 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b10$$eCorresponding author
000907890 773__ $$0PERI:(DE-600)2808093-2$$a10.1002/advs.202201116$$gp. 2201116 -$$n20$$p2201116 -$$tAdvanced science$$v9$$x2198-3844$$y2022
000907890 8564_ $$uhttps://juser.fz-juelich.de/record/907890/files/2022-04-01_Production%20data.pdf$$yOpenAccess
000907890 8564_ $$uhttps://juser.fz-juelich.de/record/907890/files/Advanced%20Science%20-%202022%20-%20Wrogemann%20-%20Advanced%20Dual%E2%80%90Ion%20Batteries%20with%20High%E2%80%90Capacity%20Negative%20Electrodes%20Incorporating.pdf$$yOpenAccess
000907890 909CO $$ooai:juser.fz-juelich.de:907890$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b8$$kFZJ
000907890 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000907890 9141_ $$y2022
000907890 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000907890 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907890 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000907890 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000907890 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907890 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000907890 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV SCI : 2021$$d2022-11-18
000907890 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000907890 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000907890 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2018-07-06T12:17:41Z
000907890 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2018-07-06T12:17:41Z
000907890 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2018-07-06T12:17:41Z
000907890 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000907890 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000907890 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000907890 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000907890 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-18
000907890 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV SCI : 2021$$d2022-11-18
000907890 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000907890 9801_ $$aFullTexts
000907890 980__ $$ajournal
000907890 980__ $$aVDB
000907890 980__ $$aUNRESTRICTED
000907890 980__ $$aI:(DE-Juel1)IEK-12-20141217
000907890 981__ $$aI:(DE-Juel1)IMD-4-20141217