001     907890
005     20240712113056.0
024 7 _ |a 10.1002/advs.202201116
|2 doi
024 7 _ |a 2128/31574
|2 Handle
024 7 _ |a 35474449
|2 pmid
024 7 _ |a WOS:000787737100001
|2 WOS
037 _ _ |a FZJ-2022-02269
082 _ _ |a 624
100 1 _ |a Wrogemann, Jens Matthies
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Advanced Dual‐Ion Batteries with High‐Capacity Negative Electrodes Incorporating Black Phosphorus
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1658909479_11504
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dual-graphite batteries (DGBs), being an all-graphite-electrode variation of dual-ion batteries (DIBs), have attracted great attention in recent years as a possible low-cost technology for stationary energy storage due to the utilization of inexpensive graphite as a positive electrode (cathode) material. However, DGBs suffer from a low specific energy limited by the capacity of both electrode materials. In this work, a composite of black phosphorus with carbon (BP-C) is introduced as negative electrode (anode) material for DIB full-cells for the first time. The electrochemical behavior of the graphite || BP-C DIB cells is then discussed in the context of DGBs and DIBs using alloying anodes. Mechanistic studies confirm the staging behavior for anion storage in the graphite positive electrode and the formation of lithiated phosphorus alloys in the negative electrode. BP-C containing full-cells demonstrate promising electrochemical performance with specific energies of up to 319 Wh kg–1 (related to masses of both electrode active materials) or 155 Wh kg–1 (related to masses of electrode active materials and active salt), and high Coulombic efficiency. This work provides highly relevant insights for the development of advanced high-energy and safe DIBs incorporating BP-C and other high-capacity alloying materials in their anodes.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Haneke, Lukas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ramireddy, Thrinathreddy
|0 0000-0001-5605-4639
|b 2
700 1 _ |a Frerichs, Joop Enno
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sultana, Irin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Chen, Ying Ian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Brink, Frank
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hansen, Michael Ryan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 8
700 1 _ |a Glushenkov, Alexey M.
|0 0000-0002-4851-839X
|b 9
|e Corresponding author
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 10
|e Corresponding author
773 _ _ |a 10.1002/advs.202201116
|g p. 2201116 -
|0 PERI:(DE-600)2808093-2
|n 20
|p 2201116 -
|t Advanced science
|v 9
|y 2022
|x 2198-3844
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907890/files/2022-04-01_Production%20data.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907890/files/Advanced%20Science%20-%202022%20-%20Wrogemann%20-%20Advanced%20Dual%E2%80%90Ion%20Batteries%20with%20High%E2%80%90Capacity%20Negative%20Electrodes%20Incorporating.pdf
909 C O |o oai:juser.fz-juelich.de:907890
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV SCI : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2018-07-06T12:17:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2018-07-06T12:17:41Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2018-07-06T12:17:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-18
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV SCI : 2021
|d 2022-11-18
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21