000907891 001__ 907891
000907891 005__ 20240712113056.0
000907891 0247_ $$2doi$$a10.1021/acsaem.1c03599
000907891 0247_ $$2Handle$$a2128/31231
000907891 0247_ $$2altmetric$$aaltmetric:122196754
000907891 0247_ $$2WOS$$aWOS:000757831300001
000907891 037__ $$aFZJ-2022-02270
000907891 082__ $$a540
000907891 1001_ $$0P:(DE-HGF)0$$aBanik, Ananya$$b0$$eFirst author
000907891 245__ $$aCan Substitutions Affect the Oxidative Stability of Lithium Argyrodite Solid Electrolytes?
000907891 260__ $$aWashington, DC$$bACS Publications$$c2022
000907891 3367_ $$2DRIVER$$aarticle
000907891 3367_ $$2DataCite$$aOutput Types/Journal article
000907891 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1653987242_18069
000907891 3367_ $$2BibTeX$$aARTICLE
000907891 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907891 3367_ $$00$$2EndNote$$aJournal Article
000907891 520__ $$aLithium-ion conducting argyrodites are among the most studied solid electrolytes due to their high ionic conductivities. A major concern in a solid-state battery is the stability of the solid electrolyte. Here, we present a systematic study on the influence of cationic and anionic substitution on the electrochemical stability of Li6PS5X using stepwise cyclic voltammetry, optical band gap measurements, and hard X-ray photoelectron spectroscopy along with first-principles calculations. We observe that on going from Li6PS5Cl to Li6+xP1–xMxS5I (M = Si4+, Ge4+), the oxidative stability does not change. Considering the chemical bonding shows that the valence band edges are mostly populated by nonbonding orbitals of the PS43– units or unbound sulfide anions and that simple substitutions in these sulfide-based solid electrolytes cannot improve oxidative stabilities. This work provides insights into the role of chemical bonding on the stability of superionic conductors and shows that alternative strategies are needed for long-term stable solid-state batteries.
000907891 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000907891 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907891 7001_ $$0P:(DE-HGF)0$$aLiu, Yunsheng$$b1
000907891 7001_ $$00000-0001-8192-996X$$aOhno, Saneyuki$$b2
000907891 7001_ $$0P:(DE-HGF)0$$aRudel, Yannik$$b3
000907891 7001_ $$00000-0003-4639-5901$$aJiménez-Solano, Alberto$$b4
000907891 7001_ $$0P:(DE-HGF)0$$aGloskovskii, Andrei$$b5
000907891 7001_ $$0P:(DE-Juel1)184936$$aVargas-Barbosa, Nella M.$$b6
000907891 7001_ $$00000-0002-8162-4629$$aMo, Yifei$$b7$$eCorresponding author
000907891 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b8$$eCorresponding author
000907891 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.1c03599$$gVol. 5, no. 2, p. 2045 - 2053$$n2$$p2045 - 2053$$tACS applied energy materials$$v5$$x2574-0962$$y2022
000907891 8564_ $$uhttps://juser.fz-juelich.de/record/907891/files/acsaem.1c03599.pdf$$yRestricted
000907891 8564_ $$uhttps://juser.fz-juelich.de/record/907891/files/Manuscript.pdf$$yPublished on 2022-02-03. Available in OpenAccess from 2023-02-03.
000907891 909CO $$ooai:juser.fz-juelich.de:907891$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907891 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184936$$aForschungszentrum Jülich$$b6$$kFZJ
000907891 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b8$$kFZJ
000907891 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000907891 9141_ $$y2022
000907891 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000907891 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000907891 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000907891 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2021$$d2022-11-15
000907891 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000907891 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000907891 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000907891 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-15
000907891 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000907891 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000907891 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2021$$d2022-11-15
000907891 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000907891 9801_ $$aFullTexts
000907891 980__ $$ajournal
000907891 980__ $$aVDB
000907891 980__ $$aUNRESTRICTED
000907891 980__ $$aI:(DE-Juel1)IEK-12-20141217
000907891 981__ $$aI:(DE-Juel1)IMD-4-20141217