001     907891
005     20240712113056.0
024 7 _ |a 10.1021/acsaem.1c03599
|2 doi
024 7 _ |a 2128/31231
|2 Handle
024 7 _ |a altmetric:122196754
|2 altmetric
024 7 _ |a WOS:000757831300001
|2 WOS
037 _ _ |a FZJ-2022-02270
082 _ _ |a 540
100 1 _ |a Banik, Ananya
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Can Substitutions Affect the Oxidative Stability of Lithium Argyrodite Solid Electrolytes?
260 _ _ |a Washington, DC
|c 2022
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1653987242_18069
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lithium-ion conducting argyrodites are among the most studied solid electrolytes due to their high ionic conductivities. A major concern in a solid-state battery is the stability of the solid electrolyte. Here, we present a systematic study on the influence of cationic and anionic substitution on the electrochemical stability of Li6PS5X using stepwise cyclic voltammetry, optical band gap measurements, and hard X-ray photoelectron spectroscopy along with first-principles calculations. We observe that on going from Li6PS5Cl to Li6+xP1–xMxS5I (M = Si4+, Ge4+), the oxidative stability does not change. Considering the chemical bonding shows that the valence band edges are mostly populated by nonbonding orbitals of the PS43– units or unbound sulfide anions and that simple substitutions in these sulfide-based solid electrolytes cannot improve oxidative stabilities. This work provides insights into the role of chemical bonding on the stability of superionic conductors and shows that alternative strategies are needed for long-term stable solid-state batteries.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liu, Yunsheng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ohno, Saneyuki
|0 0000-0001-8192-996X
|b 2
700 1 _ |a Rudel, Yannik
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jiménez-Solano, Alberto
|0 0000-0003-4639-5901
|b 4
700 1 _ |a Gloskovskii, Andrei
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vargas-Barbosa, Nella M.
|0 P:(DE-Juel1)184936
|b 6
700 1 _ |a Mo, Yifei
|0 0000-0002-8162-4629
|b 7
|e Corresponding author
700 1 _ |a Zeier, Wolfgang G.
|0 P:(DE-Juel1)184735
|b 8
|e Corresponding author
773 _ _ |a 10.1021/acsaem.1c03599
|g Vol. 5, no. 2, p. 2045 - 2053
|0 PERI:(DE-600)2916551-9
|n 2
|p 2045 - 2053
|t ACS applied energy materials
|v 5
|y 2022
|x 2574-0962
856 4 _ |u https://juser.fz-juelich.de/record/907891/files/acsaem.1c03599.pdf
|y Restricted
856 4 _ |y Published on 2022-02-03. Available in OpenAccess from 2023-02-03.
|u https://juser.fz-juelich.de/record/907891/files/Manuscript.pdf
909 C O |o oai:juser.fz-juelich.de:907891
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)184936
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-15
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL ENERG MATER : 2021
|d 2022-11-15
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21