000907893 001__ 907893
000907893 005__ 20240712113056.0
000907893 0247_ $$2doi$$a10.1002/aenm.202200717
000907893 0247_ $$2ISSN$$a1614-6832
000907893 0247_ $$2ISSN$$a1614-6840
000907893 0247_ $$2Handle$$a2128/31272
000907893 0247_ $$2altmetric$$aaltmetric:127437092
000907893 0247_ $$2WOS$$aWOS:000787726900001
000907893 037__ $$aFZJ-2022-02272
000907893 082__ $$a050
000907893 1001_ $$0P:(DE-HGF)0$$aBernges, Tim$$b0
000907893 245__ $$aConsidering the Role of Ion Transport in Diffuson‐Dominated Thermal Conductivity
000907893 260__ $$aWeinheim$$bWiley-VCH$$c2022
000907893 3367_ $$2DRIVER$$aarticle
000907893 3367_ $$2DataCite$$aOutput Types/Journal article
000907893 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654781188_30213
000907893 3367_ $$2BibTeX$$aARTICLE
000907893 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907893 3367_ $$00$$2EndNote$$aJournal Article
000907893 520__ $$aNext-generation thermal management requires the development of low lattice thermal conductivity materials, as observed in ionic conductors. For example, thermoelectric efficiency is increased when thermal conductivity is decreased. Detrimentally, high ionic conductivity leads to thermoelectric device degradation. Battery safety and design also require an understanding of thermal transport in ionic conductors. Ion mobility, structural complexity, and anharmonicity have been used to explain the thermal transport properties of ionic conductors. However, thermal and ionic transport are rarely discussed in direct comparison. Herein, the ionic conductivity of Ag+ argyrodites is found to change by orders of magnitude without altering the thermal conductivity. Thermal conductivity measurements and two-channel lattice dynamics modeling reveal that the majority of Ag+ vibrations have a non-propagating diffuson-like character, similar to amorphous materials. It is found that high ionic mobility is not a requirement for diffuson-mediated transport. Instead, the same bonding and structural traits that can lead to fast ionic conduction also lead to diffuson-mediated transport. Bridging the fields of solid-state ionics and thermal transport, it is proposed that a vibrational perspective can lead to new design strategies for functional ionic conducting materials. As a first step, the authors relate the so-called Meyer–Neldel behavior in ionic conductors to phonon occupations.
000907893 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000907893 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907893 7001_ $$0P:(DE-HGF)0$$aHanus, Riley$$b1
000907893 7001_ $$0P:(DE-HGF)0$$aWankmiller, Bjoern$$b2
000907893 7001_ $$0P:(DE-HGF)0$$aImasato, Kazuki$$b3
000907893 7001_ $$0P:(DE-HGF)0$$aLin, Siqi$$b4
000907893 7001_ $$0P:(DE-HGF)0$$aGhidiu, Michael$$b5
000907893 7001_ $$0P:(DE-HGF)0$$aGerlitz, Marius$$b6
000907893 7001_ $$0P:(DE-HGF)0$$aPeterlechner, Martin$$b7
000907893 7001_ $$0P:(DE-HGF)0$$aGraham, Samuel$$b8
000907893 7001_ $$0P:(DE-HGF)0$$aHautier, Geoffroy$$b9
000907893 7001_ $$0P:(DE-HGF)0$$aPei, Yanzhong$$b10
000907893 7001_ $$0P:(DE-HGF)0$$aHansen, Michael Ryan$$b11
000907893 7001_ $$0P:(DE-HGF)0$$aWilde, Gerhard$$b12
000907893 7001_ $$0P:(DE-HGF)0$$aSnyder, G. Jeffrey$$b13
000907893 7001_ $$0P:(DE-HGF)0$$aGeorge, Janine$$b14
000907893 7001_ $$0P:(DE-Juel1)185922$$aAgne, Matthias$$b15$$eCorresponding author
000907893 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b16$$eCorresponding author
000907893 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202200717$$gp. 2200717 -$$n22$$p2200717$$tAdvanced energy materials$$v12$$x1614-6832$$y2022
000907893 8564_ $$uhttps://juser.fz-juelich.de/record/907893/files/Advanced%20Energy%20Materials%20-%202022%20-%20Bernges%20-%20Considering%20the%20Role%20of%20Ion%20Transport%20in%20Diffuson%E2%80%90Dominated%20Thermal.pdf$$yOpenAccess
000907893 8564_ $$uhttps://juser.fz-juelich.de/record/907893/files/Tim_Bernges_Diffusons_in_Ag_Args_pre_journal.pdf$$yOpenAccess
000907893 909CO $$ooai:juser.fz-juelich.de:907893$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185922$$aForschungszentrum Jülich$$b15$$kFZJ
000907893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b16$$kFZJ
000907893 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000907893 9141_ $$y2022
000907893 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000907893 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000907893 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000907893 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000907893 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907893 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2021$$d2022-11-12
000907893 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000907893 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000907893 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000907893 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000907893 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000907893 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000907893 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000907893 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000907893 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2021$$d2022-11-12
000907893 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000907893 9801_ $$aFullTexts
000907893 980__ $$ajournal
000907893 980__ $$aVDB
000907893 980__ $$aUNRESTRICTED
000907893 980__ $$aI:(DE-Juel1)IEK-12-20141217
000907893 981__ $$aI:(DE-Juel1)IMD-4-20141217