001     907893
005     20240712113056.0
024 7 _ |a 10.1002/aenm.202200717
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/31272
|2 Handle
024 7 _ |a altmetric:127437092
|2 altmetric
024 7 _ |a WOS:000787726900001
|2 WOS
037 _ _ |a FZJ-2022-02272
082 _ _ |a 050
100 1 _ |a Bernges, Tim
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Considering the Role of Ion Transport in Diffuson‐Dominated Thermal Conductivity
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654781188_30213
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Next-generation thermal management requires the development of low lattice thermal conductivity materials, as observed in ionic conductors. For example, thermoelectric efficiency is increased when thermal conductivity is decreased. Detrimentally, high ionic conductivity leads to thermoelectric device degradation. Battery safety and design also require an understanding of thermal transport in ionic conductors. Ion mobility, structural complexity, and anharmonicity have been used to explain the thermal transport properties of ionic conductors. However, thermal and ionic transport are rarely discussed in direct comparison. Herein, the ionic conductivity of Ag+ argyrodites is found to change by orders of magnitude without altering the thermal conductivity. Thermal conductivity measurements and two-channel lattice dynamics modeling reveal that the majority of Ag+ vibrations have a non-propagating diffuson-like character, similar to amorphous materials. It is found that high ionic mobility is not a requirement for diffuson-mediated transport. Instead, the same bonding and structural traits that can lead to fast ionic conduction also lead to diffuson-mediated transport. Bridging the fields of solid-state ionics and thermal transport, it is proposed that a vibrational perspective can lead to new design strategies for functional ionic conducting materials. As a first step, the authors relate the so-called Meyer–Neldel behavior in ionic conductors to phonon occupations.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hanus, Riley
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wankmiller, Bjoern
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Imasato, Kazuki
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lin, Siqi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ghidiu, Michael
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gerlitz, Marius
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Peterlechner, Martin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Graham, Samuel
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hautier, Geoffroy
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Pei, Yanzhong
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Hansen, Michael Ryan
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Wilde, Gerhard
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Snyder, G. Jeffrey
|0 P:(DE-HGF)0
|b 13
700 1 _ |a George, Janine
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Agne, Matthias
|0 P:(DE-Juel1)185922
|b 15
|e Corresponding author
700 1 _ |a Zeier, Wolfgang G.
|0 P:(DE-Juel1)184735
|b 16
|e Corresponding author
773 _ _ |a 10.1002/aenm.202200717
|g p. 2200717 -
|0 PERI:(DE-600)2594556-7
|n 22
|p 2200717
|t Advanced energy materials
|v 12
|y 2022
|x 1614-6832
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907893/files/Advanced%20Energy%20Materials%20-%202022%20-%20Bernges%20-%20Considering%20the%20Role%20of%20Ion%20Transport%20in%20Diffuson%E2%80%90Dominated%20Thermal.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907893/files/Tim_Bernges_Diffusons_in_Ag_Args_pre_journal.pdf
909 C O |o oai:juser.fz-juelich.de:907893
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)185922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21