000907894 001__ 907894
000907894 005__ 20240712113056.0
000907894 0247_ $$2doi$$a10.1021/acs.chemmater.1c04445
000907894 0247_ $$2ISSN$$a0897-4756
000907894 0247_ $$2ISSN$$a1520-5002
000907894 0247_ $$2Handle$$a2128/31229
000907894 0247_ $$2altmetric$$aaltmetric:123644084
000907894 0247_ $$2WOS$$aWOS:000812137700001
000907894 037__ $$aFZJ-2022-02273
000907894 082__ $$a540
000907894 1001_ $$0P:(DE-HGF)0$$aTill, Paul$$b0
000907894 245__ $$aTwo-Dimensional Substitution Series $Na_3P_{1-x}Sb_xS_{4-y}Se_y$: Beyond Static Description of Structural Bottlenecks for $Na^{+}$ Transport
000907894 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2022
000907894 3367_ $$2DRIVER$$aarticle
000907894 3367_ $$2DataCite$$aOutput Types/Journal article
000907894 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1653983459_21597
000907894 3367_ $$2BibTeX$$aARTICLE
000907894 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907894 3367_ $$00$$2EndNote$$aJournal Article
000907894 520__ $$aHighly conductive solid electrolytes are fundamental for all solid-state batteries with low inner cell resistance. Such fast solid electrolytes are often found by systematic substitution experiments in which one atom is exchanged for another, and corresponding changes in ionic transport are monitored. With this strategy, compositions with the most promising transport properties can be identified fast and reliably. However, the substitution of one element does not only influence the crystal structure and diffusion channel size (static) but also the underlying bonding interactions and with it the vibrational properties of the lattice (dynamic). Since both static and dynamic properties influence the diffusion process, simple one-dimensional substitution series only provide limited insights to the importance of changes in the structure and lattice dynamics for the transport properties. To overcome these limitations, we make use of a two-dimensional substitution approach, investigating and comparing the four single-substitution series Na3P1–xSbxS4, Na3P1–xSbxSe4, Na3PS4–ySey, and Na3SbS4–ySey. Specifically, we find that the diffusion channel size represented by the distance between S/Se ions cannot explain the observed changes of activation barriers throughout the whole substitution system. Melting temperatures and the herein newly defined anharmonic bulk modulus─as descriptors for bonding interactions and corresponding lattice dynamics─correlate well with the activation barriers, highlighting the relevance of lattice softness for the ion transport in this class of fast ion conductors.
000907894 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000907894 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907894 7001_ $$0P:(DE-Juel1)185922$$aAgne, Matthias$$b1
000907894 7001_ $$0P:(DE-HGF)0$$aKraft, Marvin A.$$b2
000907894 7001_ $$0P:(DE-HGF)0$$aCourty, Matthieu$$b3
000907894 7001_ $$00000-0002-7946-1445$$aFamprikis, Theodosios$$b4
000907894 7001_ $$0P:(DE-HGF)0$$aGhidiu, Michael$$b5
000907894 7001_ $$0P:(DE-HGF)0$$aKrauskopf, Thorben$$b6
000907894 7001_ $$00000-0001-7289-1015$$aMasquelier, Christian$$b7
000907894 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b8$$eCorresponding author
000907894 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.1c04445$$gVol. 34, no. 5, p. 2410 - 2421$$n5$$p2410 - 2421$$tChemistry of materials$$v34$$x0897-4756$$y2022
000907894 8564_ $$uhttps://juser.fz-juelich.de/record/907894/files/acs.chemmater.1c04445.pdf$$yRestricted
000907894 8564_ $$uhttps://juser.fz-juelich.de/record/907894/files/Manuscript_pre_journal_format.pdf$$yPublished on 2022-02-25. Available in OpenAccess from 2023-02-25.
000907894 909CO $$ooai:juser.fz-juelich.de:907894$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907894 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185922$$aForschungszentrum Jülich$$b1$$kFZJ
000907894 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b8$$kFZJ
000907894 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000907894 9141_ $$y2022
000907894 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000907894 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000907894 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000907894 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000907894 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000907894 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000907894 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000907894 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000907894 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000907894 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000907894 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2021$$d2022-11-12
000907894 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000907894 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000907894 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCHEM MATER : 2021$$d2022-11-12
000907894 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000907894 9801_ $$aFullTexts
000907894 980__ $$ajournal
000907894 980__ $$aVDB
000907894 980__ $$aUNRESTRICTED
000907894 980__ $$aI:(DE-Juel1)IEK-12-20141217
000907894 981__ $$aI:(DE-Juel1)IMD-4-20141217