001     907896
005     20240712113056.0
024 7 _ |a 10.1002/adfm.202112138
|2 doi
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a 2128/31230
|2 Handle
024 7 _ |a altmetric:123845050
|2 altmetric
024 7 _ |a WOS:000761531600001
|2 WOS
037 _ _ |a FZJ-2022-02274
082 _ _ |a 530
100 1 _ |a Reber, David
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Water/Ionic Liquid/Succinonitrile Hybrid Electrolytes for Aqueous Batteries
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1653984901_17958
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Funding: Swiss National Science Foundation 206021_150638/1
520 _ _ |a The water-in-salt concept has significantly improved the electrochemical stability of aqueous electrolytes, and the hybridization with organic solvents or ionic liquids has further enhanced their reductive stability, enabling cell chemistries with up to 150 Wh kg−1 of active material. Here, a large design space is opened by introducing succinonitrile as a cosolvent in water/ionic liquid/succinonitrile hybrid electrolytes (WISHEs). By means of succinonitrile addition, the solubility limits can be fully circumvented, and the properties of the electrolytes can be optimized for various metrics such as highest electrochemical stability, maximum conductivity, or lowest cost. While excessive nitrile fractions render the mixtures flammable, careful selection of component ratios yields highly performant, nonflammable electrolytes that enable stable cycling of Li4Ti5O12–LiNi0.8Mn0.1Co0.1O2 full cells over a wide temperature range with strong rate performance, facilitated by the fast conformational dynamics of succinonitrile. The WISHEs allow stable cycling with a maximum energy density of ≈140 Wh kg−1 of active material, Coulombic efficiencies of close to 99.5% at 1C, and a capacity retention of 53% at 10C relative to 1C.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Borodin, Oleg
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Becker, Maximilian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rentsch, Daniel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Thienenkamp, Johannes Helmut
|0 P:(DE-Juel1)179050
|b 4
|u fzj
700 1 _ |a Grissa, Rabeb
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhao, Wengao
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Aribia, Abdessalem
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 8
|u fzj
700 1 _ |a Battaglia, Corsin
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kühnel, Ruben-Simon
|0 0000-0003-1542-2970
|b 10
|e Corresponding author
773 _ _ |a 10.1002/adfm.202112138
|g Vol. 32, no. 20, p. 2112138 -
|0 PERI:(DE-600)2039420-2
|n 20
|p 2112138
|t Advanced functional materials
|v 32
|y 2022
|x 1057-9257
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907896/files/Adv%20Funct%20Materials%20-%202022%20-%20Reber%20-%20Water%20Ionic%20Liquid%20Succinonitrile%20Hybrid%20Electrolytes%20for%20Aqueous%20Batteries.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907896/files/Manuscript.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/907896/files/Supporting%20Information.pdf
909 C O |o oai:juser.fz-juelich.de:907896
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)179050
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172047
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-15
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-15
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV FUNCT MATER : 2021
|d 2022-11-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21