001     907897
005     20250701125854.0
024 7 _ |a 10.1002/mp.15611
|2 doi
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
024 7 _ |a 2128/31485
|2 Handle
024 7 _ |a altmetric:125108027
|2 altmetric
024 7 _ |a pmid:35315089
|2 pmid
024 7 _ |a WOS:000778971300001
|2 WOS
037 _ _ |a FZJ-2022-02275
082 _ _ |a 610
100 1 _ |a Winter, Johanna
|0 0000-0002-3825-399X
|b 0
|e Corresponding author
245 _ _ |a Heat management of a compact x‐ray source for microbeam radiotherapy and FLASH treatments
260 _ _ |a College Park, Md.
|c 2022
|b AAPM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1688651161_16643
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background:Microbeam and x-ray FLASH radiation therapy are innovativeconcepts that promise reduced normal tissue toxicity in radiation oncology withoutcompromising tumor control. However, currently only large third-generationsynchrotrons deliver acceptable x-ray beam qualities and there is a need forcompact, hospital-based radiation sources to facilitate clinical translation ofthese novel treatment strategies.Purpose: We are currently setting up the first prototype of a line-focus x-raytube (LFxT), a promising technology that may deliver ultra-high dose rates(UHDRs) of more than 100 Gy/s from a table-top source. The operation of thesource in the heat capacity limit allows very high dose rates with micrometersizedfocal spot widths.Here,we investigate concepts of effective heat managementfor the LFxT, a prerequisite for the performance of the source.Methods: For different focal spot widths, we investigated the temperatureincrease numerically with Monte Carlo simulations and finite element analysis(FEA).We benchmarked the temperature and thermal stresses at the focal spotagainst a commercial x-ray tube with similar power characteristics.We assessedthermal loads at the vacuum chamber housing caused by scattering electrons inMonte Carlo simulations and FEA. Further,we discuss active cooling strategiesand present a design of the rotating target.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
536 _ _ |a DFG project 416790481 - Tumortherapie mit Mikrostrahlen an kompakter Strahlenquelle (416790481)
|0 G:(GEPRIS)416790481
|c 416790481
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Dimroth, Anton
|0 P:(DE-Juel1)180572
|b 1
|e Corresponding author
700 1 _ |a Roetzer, Sebastian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhang, Yunzhe
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Krämer, Karl-Ludwig
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Petrich, Christian
|0 0000-0002-5002-4719
|b 5
700 1 _ |a Matejcek, Christoph
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Aulenbacher, Kurt
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zimmermann, Markus
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Combs, Stephanie E.
|0 0000-0002-6934-2864
|b 9
700 1 _ |a Galek, Marek
|0 0000-0002-6983-9758
|b 10
700 1 _ |a Natour, Ghaleb
|0 P:(DE-Juel1)142196
|b 11
700 1 _ |a Butzek, Michael
|0 P:(DE-Juel1)133642
|b 12
700 1 _ |a Wilkens, Jan J.
|0 0000-0002-1851-0581
|b 13
700 1 _ |a Bartzsch, Stefan
|0 0000-0001-9550-9122
|b 14
773 _ _ |a 10.1002/mp.15611
|g Vol. 49, no. 5, p. 3375 - 3388
|0 PERI:(DE-600)1466421-5
|n 5
|p 3375 - 3388
|t Medical physics
|v 49
|y 2022
|x 0094-2405
856 4 _ |u https://juser.fz-juelich.de/record/907897/files/Medical%20Physics%20-%202022%20-%20Winter%20-%20Heat%20management%20of%20a%20compact%20x%E2%80%90ray%20source%20for%20microbeam%20radiotherapy%20and%20FLASH%20treatments.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907897
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)142196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)133642
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ITE-20250108


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21