000907898 001__ 907898
000907898 005__ 20230123110624.0
000907898 0247_ $$2doi$$a10.1021/acssynbio.2c00035
000907898 0247_ $$2Handle$$a2128/31251
000907898 0247_ $$2altmetric$$aaltmetric:127628746
000907898 0247_ $$2pmid$$apmid:35500299
000907898 0247_ $$2WOS$$aWOS:000805370400018
000907898 037__ $$aFZJ-2022-02276
000907898 082__ $$a570
000907898 1001_ $$0P:(DE-Juel1)176852$$aÖlçücü, Gizem$$b0$$ufzj
000907898 245__ $$aCatalytically Active Inclusion Bodies─Benchmarking and Application in Flow Chemistry
000907898 260__ $$aWashington, DC$$bACS$$c2022
000907898 3367_ $$2DRIVER$$aarticle
000907898 3367_ $$2DataCite$$aOutput Types/Journal article
000907898 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671203896_30957
000907898 3367_ $$2BibTeX$$aARTICLE
000907898 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907898 3367_ $$00$$2EndNote$$aJournal Article
000907898 520__ $$aIn industries, enzymes are often immobilized to obtain stable preparations that can be utilized in batch and flow processes. In contrast to traditional immobilization methods that rely on carrier binding, various immobilization strategies have been recently presented that enable the simultaneous production and in vivo immobilization of enzymes. Catalytically active inclusion bodies (CatIBs) are a promising example for such in vivo enzyme immobilizates. CatIB formation is commonly induced by fusion of aggregation-inducing tags, and numerous tags, ranging from small synthetic peptides to protein domains or whole proteins, have been successfully used. However, since these systems have been characterized by different groups employing different methods, a direct comparison remains difficult, which prompted us to benchmark different CatIB-formation-inducing tags and fusion strategies. Our study highlights that important CatIB properties like yield, activity, and stability are strongly influenced by tag selection and fusion strategy. Optimization enabled us to obtain alcohol dehydrogenase CatIBs with superior activity and stability, which were subsequently applied for the first time in a flow synthesis approach. Our study highlights the potential of CatIB-based immobilizates, while at the same time demonstrating the robust use of CatIBs in flow chemistry.
000907898 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000907898 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907898 7001_ $$0P:(DE-Juel1)171992$$aBaumer, Benedikt$$b1
000907898 7001_ $$0P:(DE-Juel1)174233$$aKüsters, Kira$$b2$$ufzj
000907898 7001_ $$0P:(DE-HGF)0$$aMöllenhoff, Kathrin$$b3
000907898 7001_ $$0P:(DE-Juel1)129053$$aOldiges, Marco$$b4$$ufzj
000907898 7001_ $$0P:(DE-Juel1)128906$$aPietruszka, Jörg$$b5$$ufzj
000907898 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b6
000907898 7001_ $$0P:(DE-Juel1)131482$$aKrauss, Ulrich$$b7$$eCorresponding author
000907898 773__ $$0PERI:(DE-600)2644383-1$$a10.1021/acssynbio.2c00035$$gVol. 11, no. 5, p. 1881 - 1896$$n5$$p1881 - 1896$$tACS synthetic biology$$v11$$x2161-5063$$y2022
000907898 8564_ $$uhttps://juser.fz-juelich.de/record/907898/files/acssynbio.2c00035.pdf$$yRestricted
000907898 8564_ $$uhttps://juser.fz-juelich.de/record/907898/files/%C3%96lc%C3%BCc%C3%BC_etal_2022_MANUSCRIPT_R1_unmarked.pdf$$yPublished on 2022-05-02. Available in OpenAccess from 2023-05-02.$$zStatID:(DE-HGF)0510
000907898 909CO $$ooai:juser.fz-juelich.de:907898$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176852$$aForschungszentrum Jülich$$b0$$kFZJ
000907898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171992$$aForschungszentrum Jülich$$b1$$kFZJ
000907898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174233$$aForschungszentrum Jülich$$b2$$kFZJ
000907898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129053$$aForschungszentrum Jülich$$b4$$kFZJ
000907898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128906$$aForschungszentrum Jülich$$b5$$kFZJ
000907898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b6$$kFZJ
000907898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131482$$aForschungszentrum Jülich$$b7$$kFZJ
000907898 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000907898 9141_ $$y2022
000907898 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000907898 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000907898 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000907898 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000907898 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000907898 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000907898 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000907898 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000907898 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-18
000907898 920__ $$lno
000907898 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000907898 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x1
000907898 9201_ $$0I:(DE-Juel1)IBOC-20090406$$kIBOC$$lInstitut für Bioorganische Chemie (HHUD)$$x2
000907898 980__ $$ajournal
000907898 980__ $$aVDB
000907898 980__ $$aI:(DE-Juel1)IBG-1-20101118
000907898 980__ $$aI:(DE-Juel1)IMET-20090612
000907898 980__ $$aI:(DE-Juel1)IBOC-20090406
000907898 980__ $$aUNRESTRICTED
000907898 9801_ $$aFullTexts