000907908 001__ 907908
000907908 005__ 20230123110624.0
000907908 0247_ $$2doi$$a10.1016/j.ijheatmasstransfer.2022.123002
000907908 0247_ $$2ISSN$$a0017-9310
000907908 0247_ $$2ISSN$$a1879-2189
000907908 0247_ $$2Handle$$a2128/31235
000907908 0247_ $$2WOS$$aWOS:000806815900002
000907908 037__ $$aFZJ-2022-02277
000907908 041__ $$aEnglish
000907908 082__ $$a620
000907908 1001_ $$0P:(DE-Juel1)179367$$aLee, Namkyu$$b0
000907908 245__ $$aThermophoretic microfluidic cells for evaluating Soret coefficient of colloidal particles
000907908 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2022
000907908 3367_ $$2DRIVER$$aarticle
000907908 3367_ $$2DataCite$$aOutput Types/Journal article
000907908 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654061501_23576
000907908 3367_ $$2BibTeX$$aARTICLE
000907908 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907908 3367_ $$00$$2EndNote$$aJournal Article
000907908 520__ $$aThermodiffusion or thermophoresis gained much interest in bio, chemical, and energy engineering. Al- though there are several methods to measure thermophoresis, they consume large sample volumes, are limited to binary mixtures, and give only indirect access to the applied temperature profile. Herein, we propose a thermophoretic microfluidic cell for quantitative measurements of the Soret coefficient of col- loids. The actual microscale measuring channel lies between cooling and heating channels to achieve a one-dimensional temperature gradient. Fluorescence lifetime imaging microscopy with Rhodamine B is utilized to measure the spatial temperature profile in the channel. The fluorescence intensity of fluo- rescently labeled polystyrene particles with a diameter of 25 nm is used to monitor the concentration profile. The observed temperature and concentration profiles are one-dimensional, as gradients in the longitudinal and height directions can be neglected. In the investigated temperature range, the averaged difference between the measured Soret coefficients with the cell and determined with the Thermal Dif- fusion Forced Rayleigh Scattering set-up is less than 8%.
000907908 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000907908 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907908 7001_ $$0P:(DE-Juel1)179461$$aMohanakumar, Shilpa$$b1$$ufzj
000907908 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b2$$eCorresponding author
000907908 773__ $$0PERI:(DE-600)2012726-1$$a10.1016/j.ijheatmasstransfer.2022.123002$$gVol. 194, p. 123002 -$$p123002 -$$tInternational journal of heat and mass transfer$$v194$$x0017-9310$$y2022
000907908 8564_ $$uhttps://juser.fz-juelich.de/record/907908/files/Supplementary-inf-thermochip-v6.pdf$$yRestricted
000907908 8564_ $$uhttps://juser.fz-juelich.de/record/907908/files/Thermophoretic%20cell_v4.pdf$$yOpenAccess
000907908 909CO $$ooai:juser.fz-juelich.de:907908$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179367$$aForschungszentrum Jülich$$b0$$kFZJ
000907908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179461$$aForschungszentrum Jülich$$b1$$kFZJ
000907908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b2$$kFZJ
000907908 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000907908 9141_ $$y2022
000907908 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000907908 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907908 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000907908 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HEAT MASS TRAN : 2021$$d2022-11-11
000907908 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000907908 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000907908 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000907908 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000907908 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000907908 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-11
000907908 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000907908 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J HEAT MASS TRAN : 2021$$d2022-11-11
000907908 920__ $$lyes
000907908 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000907908 980__ $$ajournal
000907908 980__ $$aVDB
000907908 980__ $$aUNRESTRICTED
000907908 980__ $$aI:(DE-Juel1)IBI-4-20200312
000907908 9801_ $$aFullTexts