Home > Publications database > Thermophoretic microfluidic cells for evaluating Soret coefficient of colloidal particles > print |
001 | 907908 | ||
005 | 20230123110624.0 | ||
024 | 7 | _ | |a 10.1016/j.ijheatmasstransfer.2022.123002 |2 doi |
024 | 7 | _ | |a 0017-9310 |2 ISSN |
024 | 7 | _ | |a 1879-2189 |2 ISSN |
024 | 7 | _ | |a 2128/31235 |2 Handle |
024 | 7 | _ | |a WOS:000806815900002 |2 WOS |
037 | _ | _ | |a FZJ-2022-02277 |
041 | _ | _ | |a English |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Lee, Namkyu |0 P:(DE-Juel1)179367 |b 0 |
245 | _ | _ | |a Thermophoretic microfluidic cells for evaluating Soret coefficient of colloidal particles |
260 | _ | _ | |a Amsterdam [u.a.] |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1654061501_23576 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Thermodiffusion or thermophoresis gained much interest in bio, chemical, and energy engineering. Al- though there are several methods to measure thermophoresis, they consume large sample volumes, are limited to binary mixtures, and give only indirect access to the applied temperature profile. Herein, we propose a thermophoretic microfluidic cell for quantitative measurements of the Soret coefficient of col- loids. The actual microscale measuring channel lies between cooling and heating channels to achieve a one-dimensional temperature gradient. Fluorescence lifetime imaging microscopy with Rhodamine B is utilized to measure the spatial temperature profile in the channel. The fluorescence intensity of fluo- rescently labeled polystyrene particles with a diameter of 25 nm is used to monitor the concentration profile. The observed temperature and concentration profiles are one-dimensional, as gradients in the longitudinal and height directions can be neglected. In the investigated temperature range, the averaged difference between the measured Soret coefficients with the cell and determined with the Thermal Dif- fusion Forced Rayleigh Scattering set-up is less than 8%. |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Mohanakumar, Shilpa |0 P:(DE-Juel1)179461 |b 1 |u fzj |
700 | 1 | _ | |a Wiegand, Simone |0 P:(DE-Juel1)131034 |b 2 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.ijheatmasstransfer.2022.123002 |g Vol. 194, p. 123002 - |0 PERI:(DE-600)2012726-1 |p 123002 - |t International journal of heat and mass transfer |v 194 |y 2022 |x 0017-9310 |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/907908/files/Supplementary-inf-thermochip-v6.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/907908/files/Thermophoretic%20cell_v4.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:907908 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)179367 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)179461 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131034 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J HEAT MASS TRAN : 2021 |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-11 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b INT J HEAT MASS TRAN : 2021 |d 2022-11-11 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-4-20200312 |k IBI-4 |l Biomakromolekulare Systeme und Prozesse |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBI-4-20200312 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|