001     907941
005     20240711085620.0
024 7 _ |a 10.1016/j.ceramint.2022.05.068
|2 doi
024 7 _ |a 0272-8842
|2 ISSN
024 7 _ |a 0392-2960
|2 ISSN
024 7 _ |a 2128/33869
|2 Handle
024 7 _ |a WOS:000818738700003
|2 WOS
037 _ _ |a FZJ-2022-02283
082 _ _ |a 670
100 1 _ |a Zhao, Yuxiang
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Oxidation behavior of double-ceramic-layer thermal barrier coatings deposited by atmospheric plasma spraying and suspension plasma spraying
260 _ _ |a Faenza
|c 2022
|b Ceramurgia
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675835734_8826
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper focuses on the oxidation behavior of novel double-ceramic-layer thermal barrier coatings (DCL TBCs) deposited by atmospheric plasma spraying (APS) and suspension plasma spraying (SPS). Four kinds of APS-SPS DCL TBCs with dense/porous columnar structured or vertically cracked microstructures were prepared. The oxidation behavior of the APS-SPS DCL TBCs were tested and the underlying mechanisms were further discussed. Results showed that the developed APS-SPS DCL TBCs have a better oxidation resistance than the single layer SPS TBC that was tested for comparison. In the long-term oxidation, the thermally grown oxide (TGO) can be divided into two layers, the outer mixed oxide and inner Al2O3 layer, in which the growth rate of mixed oxide in TGO changed during oxidation. In terms of the oxidation rate and oxidation lifetime, segmented APS-SPS TBCs has a slightly better performance than the columnar APS-SPS TBCs. Among the four different APS-SPS TBCs, the segmented dense APS-SPS TBCs with low vertical crack density appears to have more potential to be used for industrial application.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ge, Yuxue
|0 0000-0002-4890-3108
|b 1
700 1 _ |a Jin, Xiaochao
|0 0000-0002-1604-7757
|b 2
|e Corresponding author
700 1 _ |a Koch, Denise
|0 P:(DE-Juel1)157996
|b 3
700 1 _ |a Vaßen, Robert
|0 P:(DE-Juel1)129670
|b 4
700 1 _ |a Chen, Yao
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fan, Xueling
|0 0000-0002-9479-8652
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.ceramint.2022.05.068
|g p. S0272884222016224
|0 PERI:(DE-600)245887-1
|n 16
|p 23938-23945
|t Ceramics international / Ci news
|v 48
|y 2022
|x 0272-8842
856 4 _ |u https://juser.fz-juelich.de/record/907941/files/Oxidation%20behavior%20of%20double-ceramic-layer%20thermal%20barrier%20coatings%20%28002%29va.docx-1.pdf
|y Restricted
856 4 _ |y Published on 2022-05-11. Available in OpenAccess from 2024-05-11.
|u https://juser.fz-juelich.de/record/907941/files/Oxidation%20behavior%20of%20double-ceramic-layer%20thermal%20barrier%20coatings%20deposited%20by%20atmospheric%20plasma%20spraying%20and%20suspension%20plasma%20spraying%20%28002%29va.docx
909 C O |o oai:juser.fz-juelich.de:907941
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157996
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CERAM INT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21