001     907954
005     20230712162951.0
024 7 _ |2 doi
|a 10.1162/dint_a_00130
024 7 _ |2 ISSN
|a 2096-7004
024 7 _ |2 ISSN
|a 2641-435X
024 7 _ |2 Handle
|a 2128/31260
024 7 _ |2 altmetric
|a altmetric:128572751
024 7 _ |2 WOS
|a WOS:000850893200009
037 _ _ |a FZJ-2022-02296
041 _ _ |a English
082 _ _ |a 020
100 1 _ |0 P:(DE-Juel1)16212
|a Schröder, Sabine
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Enabling Canonical Analysis Workflows:Documented Data Harmonization on Global Air Quality Data
260 _ _ |a Cambridge, MA
|b MIT Press
|c 2022
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1672836110_27125
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Data harmonization and documentation of the data processing are essential prerequisites for enabling Canonical Analysis Workflows. The recently revised Terabyte-scale air quality database system, which the Tropospheric Ozone Assessment Report (TOAR) created, contains one of the world's largest collections of near-surface air quality measurements and considers FAIR data principles as an integral part. A special feature of our data service is the on-demand processing and product generation of several air quality metrics directly from the underlying database. In this paper, we show that the necessary data harmonization for establishing such online analysis services goes much deeper than the obvious issues of common data formats, variable names, and measurement units, and we explore how the generation of FAIR Digital Objects (FDO) in combination with automatically generated documentation may support Canonical Analysis Workflows for air quality and related data.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(EU-Grant)787576
|a IntelliAQ - Artificial Intelligence for Air Quality (787576)
|c 787576
|f ERC-2017-ADG
|x 1
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)179096
|a Epp, Eleonora
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)166264
|a Mozaffari, Amirpasha
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)132243
|a Romberg, Mathilde
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)186637
|a Selke, Niklas
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)6952
|a Schultz, Martin G.
|b 5
|u fzj
770 _ _ |a Canonical Workflow Frameworks for Research
773 _ _ |0 PERI:(DE-600)2973844-1
|a 10.1162/dint_a_00130
|g Vol. 4, no. 2, p. 259 - 270
|n 2
|p 259 - 270
|t Data Intelligence
|v 4
|x 2096-7004
|y 2022
856 4 _ |u https://juser.fz-juelich.de/record/907954/files/SchroederEtAl_Canonical_Workflow_Frameworks_for_Research_2022.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/907954/files/dint_a_00130.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907954
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)16212
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)179096
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166264
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132243
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)186637
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)6952
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2022
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2020-07-21T15:11:27Z
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2020-07-21T15:11:27Z
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
|d 2020-07-21T15:11:27Z
915 _ _ |0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|a Creative Commons Attribution CC BY (No Version)
|b DOAJ
|d 2020-07-21T15:11:27Z
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0112
|2 StatID
|a WoS
|b Emerging Sources Citation Index
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2022-11-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a OPENSCIENCE
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21