Home > Publications database > Enabling Canonical Analysis Workflows:Documented Data Harmonization on Global Air Quality Data > print |
001 | 907954 | ||
005 | 20230712162951.0 | ||
024 | 7 | _ | |2 doi |a 10.1162/dint_a_00130 |
024 | 7 | _ | |2 ISSN |a 2096-7004 |
024 | 7 | _ | |2 ISSN |a 2641-435X |
024 | 7 | _ | |2 Handle |a 2128/31260 |
024 | 7 | _ | |2 altmetric |a altmetric:128572751 |
024 | 7 | _ | |2 WOS |a WOS:000850893200009 |
037 | _ | _ | |a FZJ-2022-02296 |
041 | _ | _ | |a English |
082 | _ | _ | |a 020 |
100 | 1 | _ | |0 P:(DE-Juel1)16212 |a Schröder, Sabine |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Enabling Canonical Analysis Workflows:Documented Data Harmonization on Global Air Quality Data |
260 | _ | _ | |a Cambridge, MA |b MIT Press |c 2022 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1672836110_27125 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a Data harmonization and documentation of the data processing are essential prerequisites for enabling Canonical Analysis Workflows. The recently revised Terabyte-scale air quality database system, which the Tropospheric Ozone Assessment Report (TOAR) created, contains one of the world's largest collections of near-surface air quality measurements and considers FAIR data principles as an integral part. A special feature of our data service is the on-demand processing and product generation of several air quality metrics directly from the underlying database. In this paper, we show that the necessary data harmonization for establishing such online analysis services goes much deeper than the obvious issues of common data formats, variable names, and measurement units, and we explore how the generation of FAIR Digital Objects (FDO) in combination with automatically generated documentation may support Canonical Analysis Workflows for air quality and related data. |
536 | _ | _ | |0 G:(DE-HGF)POF4-5111 |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |0 G:(EU-Grant)787576 |a IntelliAQ - Artificial Intelligence for Air Quality (787576) |c 787576 |f ERC-2017-ADG |x 1 |
536 | _ | _ | |0 G:(DE-Juel-1)ESDE |a Earth System Data Exploration (ESDE) |c ESDE |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |0 P:(DE-Juel1)179096 |a Epp, Eleonora |b 1 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)166264 |a Mozaffari, Amirpasha |b 2 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)132243 |a Romberg, Mathilde |b 3 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)186637 |a Selke, Niklas |b 4 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)6952 |a Schultz, Martin G. |b 5 |u fzj |
770 | _ | _ | |a Canonical Workflow Frameworks for Research |
773 | _ | _ | |0 PERI:(DE-600)2973844-1 |a 10.1162/dint_a_00130 |g Vol. 4, no. 2, p. 259 - 270 |n 2 |p 259 - 270 |t Data Intelligence |v 4 |x 2096-7004 |y 2022 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907954/files/SchroederEtAl_Canonical_Workflow_Frameworks_for_Research_2022.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907954/files/dint_a_00130.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:907954 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)16212 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)179096 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)166264 |a Forschungszentrum Jülich |b 2 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)132243 |a Forschungszentrum Jülich |b 3 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)186637 |a Forschungszentrum Jülich |b 4 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)6952 |a Forschungszentrum Jülich |b 5 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-511 |1 G:(DE-HGF)POF4-510 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5111 |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |v Enabling Computational- & Data-Intensive Science and Engineering |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2022-11-17 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2022-11-17 |
915 | _ | _ | |0 StatID:(DE-HGF)0501 |2 StatID |a DBCoverage |b DOAJ Seal |d 2020-07-21T15:11:27Z |
915 | _ | _ | |0 StatID:(DE-HGF)0500 |2 StatID |a DBCoverage |b DOAJ |d 2020-07-21T15:11:27Z |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b DOAJ : Blind peer review |d 2020-07-21T15:11:27Z |
915 | _ | _ | |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |a Creative Commons Attribution CC BY (No Version) |b DOAJ |d 2020-07-21T15:11:27Z |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2022-11-17 |
915 | _ | _ | |0 StatID:(DE-HGF)0112 |2 StatID |a WoS |b Emerging Sources Citation Index |d 2022-11-17 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2022-11-17 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a OPENSCIENCE |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|