001     907960
005     20220624190305.0
037 _ _ |a FZJ-2022-02302
041 _ _ |a English
100 1 _ |a Tan, Zihan
|0 P:(DE-Juel1)165875
|b 0
|e Corresponding author
|u fzj
111 2 _ |a APS March Meeting 2022
|c Chicago/Online
|d 2022-03-14 - 2022-03-18
|w USA
245 _ _ |a Quasi-two-dimensional clustering of Brownian particles with competitive interactions: Phase diagram, structures, and dynamics
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1656058929_21492
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Three-dimensional (3D) bulk dispersions of Brownian particles with competitive short-range attractive (SA) and long-range repulsive (LR) interactions show rich phase behavior, and peculiar diffusion and rheological properties. In comparison, little is known about quasi-two-dimensional (Q2D) SALR dispersions of particles confined to a liquid interface or membrane, despite their biological relevance. For instance, the antagonistic interplay of SA forces (due, e.g., to lipid-mediated depletion, wetting) and LR forces (induced, e.g., by mechanical deformations or membrane fluctuations) in membrane proteins is crucial for forming protein clusters. These clusters, in turn, are pivotal in signal transduction and protein processing. We present mesoscale simulation results on the phase behavior, cluster structures, and dynamics of planar monolayers of SALR Brownian particles embedded in a bulk fluid. Salient differences and similarities between Q2D and 3D SALR particles are highlighted[1]. Insights on the dynamics of clusters are gained from analyzing mean-squared displacements, cluster correlation and hexagonal order correlation functions, and intermediate scattering functions. Furthermore, we discuss the effects of hydrodynamic interactions on dynamic clustering[2].
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
700 1 _ |a Dhont, Jan K.G.
|0 P:(DE-Juel1)130616
|b 1
|u fzj
700 1 _ |a Naegele, Gerhard
|0 P:(DE-Juel1)130858
|b 2
|u fzj
909 C O |o oai:juser.fz-juelich.de:907960
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165875
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130616
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130858
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2022
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21