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a b s t r a c t 

Using machine-learning tools to predict individual phenotypes from neuroimaging data is one of the most promis- 

ing and hence dynamic fields in systems neuroscience. Here, we perform a literature survey of the rapidly work 

on phenotype prediction in healthy subjects or general population to sketch out the current state and ongoing 

developments in terms of data, analysis methods and reporting. Excluding papers on age-prediction and clinical 

applications, which form a distinct literature, we identified a total 108 papers published since 2007. In these, 

memory, fluid intelligence and attention were most common phenotypes to be predicted, which resonates with 

the observation that roughly a quarter of the papers used data from the Human Connectome Project, even though 

another half recruited their own cohort. Sample size (in terms of training and external test sets) and prediction 

accuracy (from internal and external validation respectively) did not show significant temporal trends. Predic- 

tion accuracy was negatively correlated with sample size of the training set, but not the external test set. While 

known to be optimistic, leave-one-out cross-validation (LOO CV) was the prevalent strategy for model valida- 

tion ( n = 48). Meanwhile, 27 studies used external validation with external test set. Both numbers showed no 

significant temporal trends. The most popular learning algorithm was connectome-based predictive modeling 

introduced by the Yale team. Other common learning algorithms were linear regression, relevance vector regres- 

sion (RVR), support vector regression (SVR), least absolute shrinkage and selection operator (LASSO), and elastic 

net. Meanwhile, the amount of data from self-recruiting studies (but not studies using open, shared dataset) was 

positively correlated with internal validation prediction accuracy. At the same time, self-recruiting studies also 

reported a significantly higher internal validation prediction accuracy than those using open, shared datasets. 

Data type and participant age did not significantly influence prediction accuracy. Confound control also did not 

influence prediction accuracy after adjusted for other factors. To conclude, most of the current literature is prob- 

ably quite optimistic with internal validation using LOO CV. More efforts should be made to encourage the use 

of external validation with external test sets to further improve generalizability of the models. 
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ntroduction 

Individual traits prediction (e.g. cognition abilities, personality

raits, emotional feeling, and motor performance) using neuroimaging

ata is an upcoming hotspot in cognitive neuroscience ( Shen et al., 2017 ;

ui et al., 2020 ). The term prediction refers to the ability to predict out-

omes successfully in data sets other than the original one used to con-

truct the model ( Poldrack et al., 2020 ). It is better for translational or

rediction purposes than the traditional univariate brain mapping anal-

sis, as the latter focused on within-sample fit of correlational relation-

hips that tends to be overfitting and not generalizable ( Poldrack et al.,
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020 ). The overall scheme usually begins with collecting structural or

unctional (resting-state or task-induced) neuroimaging data and per-

onal trait measures from a large sample. Then the neuroimaging data

hould be preprocessed and entered into a machine-learning model.

he model will be trained to find out the link between the neuroimag-

ng data (brain features) and the personal traits. Finally, the trained

odel can be generalized to predict the traits in a new sample. Its ac-

uracy can be computed by comparing with the ground truth (reality)

 Eickhoff and Langner, 2019 ). In short, there are four stages: model

uilding, internal validation, external validation, and generalizability

nd transposability ( Bzdok and Ioannidis, 2019 ). There are many ap-
dorf.de (S.B. Eickhoff) . 
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roaches to individual traits prediction. One famous approach is called

he connectome-based predictive modeling (CPM) approach, developed

y ( Finn et al., 2015 ), the term CPM established by ( Rosenberg et al.,

016 ), its protocol published by ( Shen et al., 2017 ), codes deposited

t https://github.com/YaleMRRC/CPM . Moreover, ( Finn et al., 2015 )

ntroduced the now widely used Shen 268 atlas, which was produced

ased on the parcellation method and the 100-, 200-, and 300-node at-

ases introduced by ( Shen et al., 2013 ). In that study by Rosenberg et al.,

t was reported that functional connectivity derived from task-induced

unctional magnetic resonance imaging (fMRI) could be used to train

 model that predicted a previously unseen individual’s performance in

ustained attention and even symptoms of attention deficit hyperactivity

isorder based on his/her resting-state fMRI signals ( Rosenberg et al.,

016 ). The predictive modeling field in neuroscience has seen a rapid

rowth and accumulated many papers since then. 

Of course, there are a number of factors that affect the validity or

eneralizability of predictive models in neuroimaging, spanning from

ample size, processing, features, learning, to validation. To begin with,

t was recommended that a dataset of over 100 individuals should

e used for predictive modeling ( Scheinost et al., 2019 ). Data from

 He et al., 2020 ) even suggested that 500–1000 subjects should be

he minimum. Small sample sizes would lead to underestimated er-

ors and vibration effects, meaning that methodological choices could

ave a drastic impact on the analysis outcome based on few samples

 Varoquaux, 2018 ). Subject recruitment and financial constraints could

e potential issues, and might be circumvented by the use of large, open,

hared datasets as training or test set. During data processing, potential

onfounding factors should be accounted for, such as physiological and

ead motion artifacts ( Murphy et al., 2013 ). At the stage of features in-

ut, one needs to consider what data to be entered. For instance, for

 model that predicts behavior based on brain connectivity data, con-

ectomes from multiple sources could improve the prediction accuracy

ompared to a single connectome ( Gao et al., 2019 ). Finally, external

alidation is the best practice, meaning testing the model with an inde-

endently collected (external) data set ( Scheinost et al., 2019 ). Out-of-

ample generalization and later cross-validation (CV) is less ideal, as the

ortion of the sample taken out from the same dataset will inevitably

hare similar subject and imaging features with the training set and cre-

te bias. Since generally it is relatively difficult to obtain a separate test

et, doing a CV has been a popular approach, meaning that the whole

ataset is divided into subsets that train and test the model respectively.

V is generally fine, but it should be noted that CV in small samples may

ender the models too optimistic ( Whelan and Garavan, 2014 ). 

In this work, we performed an updated general literature survey on

he study design and analytic pipeline of the individual traits prediction

mong healthy individuals or general population (not purely clinical),

nd aimed to evaluate the published studies on individual traits pre-

iction based on regression, to reveal if their generalizability could be

ndermined by the caveats mentioned above. 

ethods 

iterature search strategy 

PubMed and Web of Science Core Collection online databases were

ueried on 16 December 2021 with the following search string: ((("ma-

hine learning") OR ("predict ∗ model ∗ ") OR ("support vector machine ∗ ")

R ("LASSO 

∗ ") OR ("elastic net ∗ ") OR ("random forest ∗ ") OR ("cross

alidat ∗ ") OR ("artificial intelligen ∗ ")) AND ((brain behavior ∗ ) OR (brain

ehavior ∗ ) OR (neuromarker ∗ ) OR (brain biomarker ∗ ) OR ("individ-

al difference ∗ "))). The search covered “all fields ” for PubMed and “ti-

le/abstract/keywords ” for Web of Science. We also performed refer-

nce tracing from the yielded publications and previous review articles.

 total of 7153 publications were identified after removing duplicates.

he full text of these them were inspected and publications were ex-

luded due to the following reasons: irrelevant (e.g. within-sample cor-
2 
elation instead of predictive modeling; n = 6018), classification instead

f regression (e.g. sex classification; n = 692), involved patients only

 n = 154), review/opinion paper ( n = 121), method papers ( n = 17),

ge prediction instead of individual traits ( n = 43), conference abstract

ithout full text ( n = 0), and unspecific phenotype ( n = 0). In the end,

08 articles entered the survey (Supplementary Table 1). For complete-

ess, a list of excluded papers could be found in Supplementary Table

. 

To assess the reporting details and identify patterns/trends among

hese papers, we examined the content of them carefully. The sur-

eyed contents involved sampling, processing strategy, feature selec-

ion, learning algorithm, and validation. Sample size is a critical as-

ect of the papers, as smaller samples may be underpowered and over-

t the models, and hence producing false positives ( Varoquaux et al.,

017 ). Meanwhile, papers dealing with large open-source neuroimaging

atasets should report the dataset details well enough, as each dataset

as its unique demographic factor, imaging and behavioral measures

 Horien et al., 2021 ). For processing, accounting for confounds such as

ead motion is an important step in modeling, as their presence may

ake the model less meaningful ( Rao et al., 2017 ). Other details of

rocessing such as dimensionality reduction, feature selection, learn-

ng algorithm, hyperparameter tuning, and validation strategy were also

valuated and recorded as these are important for fellow researchers to

eplicate their results. Finally, prediction accuracy was noted to evalu-

te the model performances. Because of these rationales, the parameters

ecorded for each study were listed in the following paragraph. 

arameters recorded 

The following parameters were recorded for each study: sample size

training set and test set), data source, type of subject (minor vs adult),

mount of data for each subject (number of volumes), input data (e.g.

hat kind of connectome and matrix size), data type (task, rest, natu-

alistic, vs structural), target phenotype (e.g. intelligence), processing

trategy, reference to the Yale approach (connectome-based predictive

odeling, c.f. ( Finn et al., 2015 ; Rosenberg et al., 2016 ; Shen et al.,

017 )), brain atlas referred to, confounding variables accounted for (e.g.

ead motion), dimensionality reduction if relevant, feature selection,

earning algorithm, hyperparameter tuning, validation strategy (e.g. ex-

ernal validation or CV), and prediction accuracy (from internal and

xternal validation, respectively). The temporal trends of the statistics

ere tested across studies if they were continuous variables (e.g. pre-

iction accuracy), and across years if they were categorical (e.g. ratio of

tudies using external test set). Additional analyses were performed for

MRI and structural MRI (sMRI) studies separately. 

esults 

eneral bibliographic information 

The annual publication count showed a sharp increase in year 2018

 Fig. 1 A). Prior to 2018, there were fewer than 6 papers published per

ear. 

rediction accuracy 

In brief, 81 studies reported Pearson r as the prediction accuracy

alue from internal validation, and 16 studies reported so from external

alidation. The accuracy from internal validation ranged from 0.098 to

.978, whereas the accuracy from external validation ranged from 0.220

o 0.736. Though the prediction accuracy from either validation method

eemed to show a slight decreasing trend by year ( Fig. 1 B), no signifi-

ant linear correlation was observed (Pearson correlation test, internal

alidation: n = 81, r = − 0.201, p = 0.071; external validation: n = 16,

 = − 0.482, p = 0.059). For the studies that did not report any Pearson r

s the prediction accuracy, Spearman rho was the most popular metric

https://github.com/YaleMRRC/CPM
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Fig. 1. Graphical summary of the surveyed articles. (A) Annual publication count and studies using external test set. (B) Prediction accuracy of models using internal 

validation (IV) and external validation (EV) respectively. (C) Sample sizes of training set and external test set. Studies published in 2015 or before were not plotted 

as they did not recruit external test set. (D) Proportion of studies mentioning that they followed the Yale approach ( “connectome-based predictive modeling ” [CPM], 

e.g. from ( Finn et al., 2015 ; Rosenberg et al., 2016 ; Shen et al., 2017 )). (E) The use of leave-one-out cross-validation (LOO CV). 
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 n = 11). Other reported metrics included standardized mean squared

rror, mean absolute error (MAE), root mean square error (RMSE), pre-

iction R 

2 , and adjusted R 

2 . 

ample size 

Before year 2016, the few surveyed studies only recruited subjects

or their training set, without external test set or involvement of open,

hared dataset. The mean sample size of their training set was 64, 25.5,

0, 49, and 185.5 for year 2007, 2010, 2013, 2014, and 2015, respec-

ively. Fig. 1 C illustrated the sample size since year 2016. For training

et, self-recruiting studies had a mean sample size of 108 during the pe-

iod of 2016–2021, whereas studies using open, shared datasets had a

uch larger mean sample size of 1140. For test set, however, the former

roup and the latter group had a similar mean sample size (251 vs 278).
3 
he sample size of self-recruiting studies did not show significant lin-

ar correlation with year (Pearson correlation test, training set: n = 52,

 = 0.078, p = 0.581; test set: n = 14, r = 0.158, p = 0.590). The same

eld true for studies using open, shared datasets (training set: n = 45,

 = 0.106, p = 0.489; test set: n = 12, r = − 0.093, p = 0.773). 

election of data source and data type 

In terms of data source of the training set, 61 studies recruited their

wn subjects, whereas the Human Connectome Project (HCP) was used

y 21 studies ( Table 1 ). HCP may refer to various versions of the HCP

ataset, such as “unrelated 100", S500, S900, and S1200. Readers should

e aware that the more recent datasets (e.g. S1200) not only had a larger

ample size, but also contained updated data on family structures of the

ubjects (e.g., relationships as twins or non-twin siblings, but excluding
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Table 1 

Data sources of the training set. 

Data source Number of studies 

Recruited subjects 61 

HCP S1200 6 

HCP S900 6 

HCP S500 4 

ABCD 4 

PNC 4 

HCP (unclear version) 3 

SLIM 3 

Previously trained model 2 

HCP "unrelated 100 ” 2 

UESTC 2 

UKB 2 

ABCD, Adolescent Brain Cognitive Development Study. HCP, Human Con- 

nectome Project. PNC, Philadelphia Neurodevelopmental Cohort. SLIM, SLIM 

dataset from Liu et al. (2017) . UESTC, University of Electronic Science and 

Technology of China. UKB, UK Biobank. The data sources below were each 

used once and hence not listed in the table: ABIDE-II (Autism Brain Imaging 

Data Exchange), ADNI-2 (Alzheimer’s Disease Neuroimaging Initiative), ADNI- 

GO, AHAB-2 (Adult Health and Behavior project —Phase 2), ATR dataset from 

Yamashita et al. (2015) , BBP (Behavioral Brain Research Project of Chinese Per- 

sonality), BCAS (Brain and Cognition Aging Study), CamCAN (Cambridge centre 

for Ageing and Neuroscience), CBDC (Cognition and Brain Development in Chil- 

dren), DIAMOND (Dimensions of Affect, Mood, and Neural Circuitry Underlying 

Distress Study), Duke Neurogenetics Study, GUSTO (Growing Up in Singapore 

Towards healthy Outcomes), IMAGEN dataset from Schumann et al. (2010) , 

NKI-RS (Nathan Kline Institute Rockland Sample), OASIS-3 (Open Access Series 

of Imaging Studies), PING (Pediatric Imaging, Neurocognition, and Genetics), 

PIP (Pittsburgh Imaging Project), TTC (Tokyo TEEN Cohort Study), UNC Early 

Brain Development Study. 

Table 2 

Frequency of common types of input data. 

Input data Frequency (n) 

Resting state functional connectivity (RSFC) connectome 32 

Both task-induced FC and RSFC connectome 15 

Task-induced FC connectome 10 

For other less common types of input data, please refer to Supplementary Table 

1 for the details of each study. 
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irth order). Therefore, the umbrella term HCP did not necessarily im-

ly an identical sample used across the studies. Among the 21 studies

sing HCP data, S1200 was the most popular dataset ( Table 1 ). Mean-

hile, different target phenotypes were investigated, with some of the

ecurring ones being fluid intelligence/intelligence quotient ( n = 15),

ttention ( n = 12), and memory ( n = 11). 

Regarding input data, resting state functional connectivity (RSFC)

onnectome was much more common than task-induced FC connec-

ome or the combination of both ( Table 2 ). The brain atlas used for

onnectome data were also diverse, with the canonical Shen 268 atlas

 Finn et al., 2015 ; Shen et al., 2013 ) being most prevalent ( Table 3 ). 

ealing with confounding factors during data processing 

Over half of the studies (61 out of 108) did not control for potential

onfounding factors such as age, sex, head motion. Studies controlled

or them mainly entered them as regressors in the regression models. 

aried feature selection and learning 

Thirty-two papers (32.3%) published since 2016 followed the Yale

pproach pioneered by Finn et al. (2015) mentioned in the Introduction,

hich achieved a brain-behavior prediction by means of an approach

alled connectome-based predictive modeling (CPM) ( Fig. 1 D). In year

020, almost half of the studies followed this approach. It basically in-
4 
olved a linear regression and the feature selection method was typically

hoosing FCs with significant correlation (e.g. p < 0.01) with the pre-

icted measure [and then the sums of selected positive or negative edges

the summary measure), is used as input features for linear regression].

ther papers had very diverse feature selection methods, with two recur-

ing methods including feature selection from regions-of-interest (ROIs,

 = 4) and principal component analysis (PCA, n = 2). Some common

earning algorithm used by these non-CPM papers were multiple linear

egression, relevance vector regression (RVR), support vector regression

SVR), partial least squares regression (PLSR), least absolute shrinkage

nd selection operator (LASSO), and elastic net. Most studies did not

equire hyperparameters tuning, and nested k-fold CV [in descending

rder of frequency: ( n = 8) 10-fold, ( n = 6) 3-fold, ( n = 3) 5-fold, and

 n = 2) 20-fold] was the predominant choice. See Supplementary Table

 for details. 

iversity of validation 

For validation strategy, 48 studies (44.4%) involved leave-one-out

ross-validation (LOO CV). Twenty-four of these LOO CV papers men-

ioned they used the Yale approach, suggesting a dependency of this CV

trategy on the CPM modeling approach. The annual ratio of studies us-

ng LOO CV fluctuated around 50% and showed no obvious trend against

ear (Pearson correlation test on period 2013–2021, n = 9, r = 0.341,

 = 0.369; Fig. 1 E). Ten-fold CV and 4-fold CV were involved in 19 and

0 studies respectively. Meanwhile, 27 studies involved external test

ets (26 were cross-dataset whereas one was cross-site) and they were

ublished in 2016–2021 ( Fig. 1 A). The proportion of studies using an

xternal test set has remained largely constant across years with no dis-

ernible trend (Pearson correlation test, n = 6, r = 0.037, p = 0.945).

eaders should be aware of the few data points used in these two tests.

otential influencing factors on prediction accuracy 

Table 4 shows that sample size could influence the prediction ac-

uracy. Precisely, the smaller the sample size of the training set, the

igher the internal validation prediction accuracy was found ( n = 81,

 = − 0.265, p = 0.017). On the contrary, the sample size of the exter-

al test set did not show significant correlation with external validation

rediction accuracy. Meanwhile, the amount of data from self-recruiting

tudies (but not studies using open, shared dataset) was positively cor-

elated with internal validation prediction accuracy ( n = 30, r = 0.651, p

 0.001). At the same time, self-recruiting studies also reported a signif-

cantly higher internal validation prediction accuracy than those using

pen, shared datasets (Mean ± SD, self-recruiting: n = 46, 0.509 ± 0.229,

hared dataset: n = 35, 0.386 ± 0.190, p = 0.012). Besides, internal val-

dation reported higher accuracy than external validation within stud-

es that used both types of validation. Meanwhile, studies using mod-

ls that were uncontrolled for confounds reported a significantly higher

nternal validation prediction accuracy than those using models that

ere controlled for confounds (Mean ± SD, controlled studies: n = 33,

.395 ± 0.197; uncontrolled studies: n = 48, 0.498 ± 0.228, p = 0.038).

ata type and participant age did not significantly influence prediction

ccuracy. Table 4 shows the detailed results of the statistical tests. It

hould be noted that some studies may provide more than one data

oint whereas some studies may have missing data for the statistical

ests, and hence the n reported may not correspond to the number of

tudies involved. Readers should refer to Supplementary Table 3 for the

ata used. 

When the significant factors were considered together by partial cor-

elation tests, it was found that training set sample size remained signif-

cant after adjusted for confound control, but became insignificant after

onsidering participant source or amount of data. Meanwhile, partic-

pant source remained significant after adjusted for confound control,

ut became insignificant after considering training set sample size or

mount of data. In turn, amount of data for studies recruiting subjects
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Table 3 

Brain atlases referred by studies using connectome data. 

Brain atlas No. of nodes Coverage (whole brain, cortex 

only, cerebellum only, etc.) 

Functionally defined vs 

anatomically defined 

Number of 

studies 

Shen 268 atlas, see ( Finn et al., 2015 ; Shen et al., 2013 ) 268 Whole brain Functionally defined 29 

( Power et al., 2011 ) 264 Whole brain Functionally defined 8 

( Fan et al., 2016 ) 246 Whole brain Anatomically defined 5 

Independent component analysis (ICA) components Variable Variable Variable 5 

( Dosenbach et al., 2010 ) 160 Whole brain Functionally defined 4 

( Tzourio-Mazoyer et al., 2002 ) 116 Cortex only Anatomically defined 3 

( Glasser et al., 2016 ) 360 Cortex only Functionally and 

anatomically defined 

3 

( Gordon et al., 2016 ) 333 Cortex only Functionally defined 3 

( Schaefer et al., 2018 ) 100–1000 (400 version 

used in 2 studies) 

Cortex only Functionally defined 2 

( Desikan et al., 2006 ) 68 Cortex only Anatomically defined 2 

( Gilmore et al., 2012 ) 78 Cortex only Anatomically defined 1 

( Diedrichsen, 2006 ) 28 Cerebellum Anatomically defined 1 

( Fischl et al., 2002 ) 37 (14 used in 1 study) Whole brain Anatomically defined 1 

( Buckner et al., 2011 ) 7 or 17 Cerebellum Functionally defined 1 

( Feng et al., 2019 ) 52 Whole brain (neonatal) Anatomically defined 1 

( Yeo et al., 2011 ) 114 (39 used in 1 study) Cortex only Functionally defined 1 

( Destrieux et al., 2010 ) 148 Cortex only Anatomically defined 1 

Some studies referred to multiple atlas and they were counted within the table. 

Table 4 

Influencing factors of prediction accuracy. 

Factor Test Stat P value 

Sample size Pearson correlation 

a. of external test set (prediction accuracy from external validation) n = 17, r = − 0.302 (i.e. larger test set, lower 

prediction accuracy) 

0.239 

b. of training set (prediction accuracy from internal validation) n = 81, r = − 0.265 (i.e. larger test set, lower 

prediction accuracy) 

0.017 

Amount of data (total number of volumes per individual) Pearson correlation 

a. for studies recruiting subjects n = 30, r = 0.651 (i.e. more data, higher prediction 

accuracy) 

< 0.001 

b. for studies using open, shared dataset n = 28, r = − 0.095 (i.e. less data, higher prediction 

accuracy) 

0.629 

Data type (task, rest, naturalistic, structural vs mixed) One-way ANOVA Mean ± SD 

Task ( n = 20): 0.510 ± 0.218, rest ( n = 36): 

0.421 ± 0.166, structural ( n = 18): 0.410 ± 0.270, 

mixed ( n = 10): 0.567 ± 0.243 (No study used 

naturalistic data) 

0.129 

Participant source (self-recruiting vs open, shared dataset) T-test Mean ± SD 

Self-recruiting ( n = 46): 0.509 ± 0.229, shared 

dataset ( n = 35): 0.386 ± 0.190 

0.012 

Participant age (involved minor vs adult only) T-test Mean ± SD 

Involved minor ( n = 16): 0.476 ± 0.233, adult only 

( n = 65): 0.451 ± 0.219 

0.688 

Control for confounds (yes vs no) T-test Mean ± SD 

Yes ( n = 33): 0.395 ± 0.197, no ( n = 48): 

0.498 ± 0.228 

0.038 

Validation type (internal vs external) 

a. for studies that involved both types Paired t -test Mean ± SD ( n = 13) 

Internal: 0.536 ± 0.242, external: 0.427 ± 0.158 

0.014 

b. across all studies T-test Mean ± SD 

Internal ( n = 81): 0.456 ± 0.220, external ( n = 16): 

0.426 ± 0.153 

0.606 

Unless otherwise specified, prediction accuracy referred to Pearson’s correlation r value resulted from internal validation. Studies without reporting r value were 

omitted. It should be noted that some studies may provide more than one data point whereas some studies may have missing data for the statistical tests, and 

hence the n reported may not correspond to the number of studies involved. Readers should refer to Supplementary Table 3 for the data used. 
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emained significant after adjusted for training set sample size and con-

ound control. On the contrary, confound control and validation type

for studies that involved both internal and external validation) were

ot significant after adjusted for other factors. Readers should refer to

upplementary Table 4 for the full results of the partial correlation tests.

Additional analyses for only fMRI studies have shown that, the

mount of data from self-recruiting studies (but not studies using open,

hared dataset) was positively correlated with internal validation pre-

iction accuracy ( n = 28, r = 0.654, p < 0.001). Self-recruiting studies
5 
lso reported a significantly higher internal validation prediction accu-

acy than those using open, shared datasets (Mean ± SD, self-recruiting:

 = 31, 0.534 ± 0.211, shared dataset: n = 27, 0.375 ± 0.150, p = 0.002).

nternal validation reported higher accuracy than external validation

ithin studies that used both types of validation ( n = 10, Mean ± SD,

nternal: 0.524 ± 0.255, external: 0.408 ± 0.146, p = 0.045). Sample size

id not correlate with prediction accuracy (Supplementary Table 5). No

artial correlation test was conducted for this subset, as there were very

ittle or no overlap between studies involving these significant factors.
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eanwhile, additional analyses for only sMRI studies have shown that

one of the factors correlated with prediction accuracy (Supplementary

able 6). 

iscussion 

Based on 108 neuroimaging studies on individual traits prediction

ublished mainly in the late 2010s, it was found that sample size of the

raining set was negatively correlated with prediction accuracy from

tudies using internal validation. Meanwhile, amount of data of re-

ruited subjects was positively correlated with internal validation pre-

iction accuracy. Recurring target phenotypes were memory, attention,

nd intelligence. Half of the studies recruited their own subjects whereas

CP was the dominant open, shared dataset to be used. The most typi-

al method for working with connectome data was “FCs with significant

orrelation (e.g. p < 0.01) with the predicted measure were selected as

eatures ”. The most popular learning algorithms were CPM, multiple

inear regression, RVR, SVR, PLSR, LASSO, and elastic net. Most stud-

es did not require hyperparameters tuning, and nested k-fold CV was

he predominant choice for those required. LOO CV was the commonest

alidation strategy. Only a quarter of studies used external validation. 

Our results showed a negative correlation between internal vali-

ation prediction accuracy and sample size. This negative correlation

as similar to what was reported for mental disorders and health

 Sui et al., 2020 ). Small sample size could lead to overfitting and hence

he higher prediction accuracy particularly for CV cases, so that the

rained model might explain little of the variance from an external test

et ( Varoquaux et al., 2017 ). This is particularly problematic for study-

ng patients with uncommon diseases or medical conditions, or eval-

ating clinical outcomes of certain treatments ( Gabrieli et al., 2015 ).

owever, the use of external validation could overcome this problem,

s such negative correlation vanished when the external validation pre-

iction accuracy and the sample size of the external test set were eval-

ated. 

Meanwhile, the small sample size issue could be partially addressed

y using large open neuroimaging datasets. Currently there are multiple

pen datasets available to researchers, covering structural MRI, diffu-

ion MRI, resting-state MRI, task-based fMRI, behavioral data, genomics

ata, and occasionally physiological and angiographic data from a sin-

le subject up to 100,000 subjects ( Horien et al., 2021 ; Madan, 2021 ).

xamples included HCP, UK Biobank, and Adolescent Brain Cognitive

evelopment (ABCD) study. However, the use of these large datasets

ended to encourage some researchers to use CV or hold-out test sets (a

riori split of the dataset) that could be optimistic. It will be more chal-

enging, but the results will be more robust if researchers share data

nd evaluate model performance on new sites or unseen datasets. Also,

esearchers should know how the data have been pre-processed and ma-

ipulated, so that it could better match the characteristics of the neu-

oimaging data from their own recruited subjects. Otherwise, the trained

odel might not give good predictions on an external test set. The users

f HCP data should report precisely which dataset was used, as differ-

nt datasets went through different processing pipelines and contained

ifferent subjects. 

Here, we reported a 25% of surveyed studies using external test sets.

onsistent to a previous review reporting that only 25% of predictive

odeling studies on treatment response to addictions (alcohol and sub-

tance use) included external validation ( Yip et al., 2020 ). The small

umber of studies reporting external validation / unseen test sets could

e due to generalization failure (of the models) or lack of additional

ndependent data ( Sui et al., 2020 ). It was not possible for us to know

f generalization failure did occur for the models, but such failure, if

xisted, could be accounted by model selection-related issues and ho-

ogeneous sample ( Boeke et al., 2020 ). As very few datasets actually

ollected behavioral measures by implementing the same psychometric

ests, it remains to be investigated whether similar behavioral measure

e.g. fluid intelligence/intelligence quotient) from different datasets can
6 
e predicted with the same predictive model. External validation is rec-

mmended, as it will avoid confusion from reporting in-sample model

t indices as predictive accuracy and avoid inappropriate CV procedure

uch as post hoc CV ( Poldrack et al., 2020 ). Therefore, open data sharing

nitiatives should be encouraged to make external validation more feasi-

le beyond a single laboratory or study site, before the models would be

ltimately tested in a large-scale, diverse population-level ( Woo et al.,

017 ). 

The connectome data and brain atlases used by the surveyed stud-

es were heterogeneous. This created a variation in the methodology

sed by different studies, rendering it a potential confounding factor in

omparing results across different predictive models. Together with the

tudies using recruited subjects instead of open datasets, the variability

f the analysis pipeline would influence the results as it would for single

ataset or group analysis ( Botvinik-Nezer et al., 2020 ; Carp, 2012 ). 

onclusion 

Based on this work, it was found that the literature currently largely

ails to adhere to the recommended best practices, for instance, as out-

ined by ( Scheinost et al., 2019 ; Woo et al., 2017 ). Few studies employed

xternal validation for their trained predictive model. Without external

alidation, internal validation requires very careful planning and con-

iderations with regard to sample size and CV method, which might

e subjects of debate to avoid predictive models being too optimistic.

herefore, the authors recommended that future predictive modeling

tudies should always consider incorporating external validation. When

sing training and test sets from the same datasets, it is crucial to make

hem completely independent. 
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