000908001 001__ 908001
000908001 005__ 20230302081423.0
000908001 0247_ $$2doi$$a10.5194/gmd-15-4331-2022
000908001 0247_ $$2ISSN$$a1991-959X
000908001 0247_ $$2ISSN$$a1991-9603
000908001 0247_ $$2Handle$$a2128/31261
000908001 0247_ $$2altmetric$$aaltmetric:129215689
000908001 0247_ $$2WOS$$aWOS:000805424800001
000908001 037__ $$aFZJ-2022-02315
000908001 082__ $$a550
000908001 1001_ $$0P:(DE-Juel1)171435$$aBetancourt, Clara$$b0
000908001 245__ $$aGlobal, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties
000908001 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2022
000908001 3367_ $$2DRIVER$$aarticle
000908001 3367_ $$2DataCite$$aOutput Types/Journal article
000908001 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654581608_14475
000908001 3367_ $$2BibTeX$$aARTICLE
000908001 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908001 3367_ $$00$$2EndNote$$aJournal Article
000908001 520__ $$aTropospheric ozone is a toxic greenhouse gas with a highly variable spatial distribution which is challenging to map on a global scale. Here, we present a data-driven ozone-mapping workflow generating a transparent and reliable product. We map the global distribution of tropospheric ozone from sparse, irregularly placed measurement stations to a high-resolution regular grid using machine learning methods. The produced map contains the average tropospheric ozone concentration of the years 2010–2014 with a resolution of 0.1∘ × 0.1∘. The machine learning model is trained on AQ-Bench (“air quality benchmark dataset”), a pre-compiled benchmark dataset consisting of multi-year ground-based ozone measurements combined with an abundance of high-resolution geospatial data.Going beyond standard mapping methods, this work focuses on two key aspects to increase the integrity of the produced map. Using explainable machine learning methods, we ensure that the trained machine learning model is consistent with commonly accepted knowledge about tropospheric ozone. To assess the impact of data and model uncertainties on our ozone map, we show that the machine learning model is robust against typical fluctuations in ozone values and geospatial data. By inspecting the input features, we ensure that the model is only applied in regions where it is reliable.We provide a rationale for the tools we use to conduct a thorough global analysis. The methods presented here can thus be easily transferred to other mapping applications to ensure the transparency and reliability of the maps produced.
000908001 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000908001 536__ $$0G:(EU-Grant)787576$$aIntelliAQ - Artificial Intelligence for Air Quality (787576)$$c787576$$fERC-2017-ADG$$x1
000908001 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x2
000908001 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908001 7001_ $$0P:(DE-HGF)0$$aStomberg, Timo T.$$b1
000908001 7001_ $$0P:(DE-HGF)0$$aEdrich, Ann-Kathrin$$b2
000908001 7001_ $$0P:(DE-Juel1)186635$$aPatnala, Ankit$$b3$$ufzj
000908001 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin G.$$b4
000908001 7001_ $$0P:(DE-HGF)0$$aRoscher, Ribana$$b5
000908001 7001_ $$0P:(DE-HGF)0$$aKowalski, Julia$$b6
000908001 7001_ $$0P:(DE-Juel1)180752$$aStadtler, Scarlet$$b7$$eCorresponding author$$ufzj
000908001 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-15-4331-2022$$gVol. 15, no. 11, p. 4331 - 4354$$n11$$p4331 - 4354$$tGeoscientific model development$$v15$$x1991-959X$$y2022
000908001 8564_ $$uhttps://juser.fz-juelich.de/record/908001/files/betancourt_gmd_mapping_2022.pdf$$yOpenAccess
000908001 8767_ $$8102160$$d2022-09-21$$eAPC$$jZahlung erfolgt$$zOABLE
000908001 909CO $$ooai:juser.fz-juelich.de:908001$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171435$$aForschungszentrum Jülich$$b0$$kFZJ
000908001 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000908001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186635$$aForschungszentrum Jülich$$b3$$kFZJ
000908001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b4$$kFZJ
000908001 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUniversität Bonn$$b5
000908001 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b6$$kRWTH
000908001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180752$$aForschungszentrum Jülich$$b7$$kFZJ
000908001 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000908001 9141_ $$y2022
000908001 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000908001 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908001 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000908001 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-26
000908001 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908001 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-26
000908001 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000908001 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-16T18:00:10Z
000908001 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-16T18:00:10Z
000908001 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-01-16T18:00:10Z
000908001 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000908001 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000908001 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000908001 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2021$$d2022-11-25
000908001 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000908001 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000908001 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000908001 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGEOSCI MODEL DEV : 2021$$d2022-11-25
000908001 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000908001 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908001 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908001 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000908001 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000908001 9801_ $$aFullTexts
000908001 980__ $$ajournal
000908001 980__ $$aVDB
000908001 980__ $$aUNRESTRICTED
000908001 980__ $$aI:(DE-Juel1)JSC-20090406
000908001 980__ $$aAPC