001     908047
005     20231116095329.0
024 7 _ |a 10.17660/ActaHortic.2022.1335.47
|2 doi
024 7 _ |a 0567-7572
|2 ISSN
024 7 _ |a 2406-6168
|2 ISSN
024 7 _ |a WOS:001074517100049
|2 WOS
037 _ _ |a FZJ-2022-02344
100 1 _ |a Domínguez-Niño, J. M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a IX International Symposium on Irrigation of Horticultural Crops
|c Matera
|d 2019-06-17 - 2019-06-17
|w Italy
245 _ _ |a Reliability of capacitance type soil moisture sensors for their use in automated scheduling of drip irrigation in orchards
260 _ _ |c 2022
300 _ _ |a 381-387
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1656058333_21492
|2 PUB:(DE-HGF)
520 _ _ |a Drip irrigation applies water to the soil in an efficient way, reducing the wet surface and supplying water close to the root zone. However, it determines a heterogeneous distribution of water in the soil that complicates its monitoring with sensors. To this end, the purpose of this work was to characterize and understand the main sources of variability involved in the measurement with capacitance sensors in an apple orchard (Malus domestica, Golden Reinders). The results showed that (1) the main source of variability was the position and extension of wet bulbs, (2) thanks to Hydrus model, we could understand the uncertainty in soil water dynamics and (3) despite the variability, it was possible to automate the irrigation in an apple orchard and give to each plot the water doses that needed.
536 _ _ |a 2B2 - TERENO (CTA - CCA) (POF4-2B2)
|0 G:(DE-HGF)POF4-2B2
|c POF4-2B2
|f POF IV
|x 0
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Casadesús, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bogena, H. R.
|0 P:(DE-Juel1)129440
|b 2
|u fzj
700 1 _ |a Huisman, J. A.
|0 P:(DE-Juel1)129472
|b 3
|u fzj
773 _ _ |a 10.17660/ActaHortic.2022.1335.47
|p 381 - 388
|y 2022
|g no. 1335, p. 381 - 388
|n 1335
909 C O |o oai:juser.fz-juelich.de:908047
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129472
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l CROSS-TOPIC ACTIVITIES (CTAs)
|1 G:(DE-HGF)POF4-2B0
|0 G:(DE-HGF)POF4-2B2
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v TERENO (CTA - CCA)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 1
914 1 _ |y 2022
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21