001     908049
005     20250129092500.0
024 7 _ |a 10.3390/jlpea12020023
|2 doi
024 7 _ |a 2128/31826
|2 Handle
024 7 _ |a WOS:000817696700001
|2 WOS
037 _ _ |a FZJ-2022-02346
082 _ _ |a 530
100 1 _ |a Kleijnen, Robert
|0 P:(DE-Juel1)178650
|b 0
|e Corresponding author
245 _ _ |a A Network Simulator for the Estimation of Bandwidth Load and Latency Created by Heterogeneous Spiking Neural Networks on Neuromorphic Computing Communication Networks
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1676461222_10239
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Accelerated simulations of biological neural networks are in demand to discover the principals of biological learning. Novel many-core simulation platforms, e.g., SpiNNaker, BrainScaleS and Neurogrid, allow one to study neuron behavior in the brain at an accelerated rate, with a high level of detail. However, they do not come anywhere near simulating the human brain. The massive amount of spike communication has turned out to be a bottleneck. We specifically developed a network simulator to analyze in high detail the network loads and latencies caused by different network topologies and communication protocols in neuromorphic computing communication networks. This simulator allows simulating the impacts of heterogeneous neural networks and evaluating neuron mapping algorithms, which is a unique feature among state-of-the-art network models and simulators. The simulator was cross-checked by comparing the results of a homogeneous neural network-based run with corresponding bandwidth load results from comparable works. Additionally, the increased level of detail achieved by the new simulator is presented. Then, we show the impact heterogeneous connectivity can have on the network load, first for a small-scale test case, and later for a large-scale test case, and how different neuron mapping algorithms can influence this effect. Finally, we look at the latency estimations performed by the simulator for different mapping algorithms, and the impact of the node size.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Robens, Markus
|0 P:(DE-Juel1)156319
|b 1
700 1 _ |a Schiek, Michael
|0 P:(DE-Juel1)133935
|b 2
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 3
773 _ _ |a 10.3390/jlpea12020023
|g Vol. 12, no. 2, p. 23 -
|0 PERI:(DE-600)2662567-2
|n 2
|p 23 -
|t Journal of Low Power Electronics and Applications
|v 12
|y 2022
|x 2079-9268
856 4 _ |u https://juser.fz-juelich.de/record/908049/files/Network%20Simulator%20Extended%20Version%20JLPEA.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/908049/files/Supplementary%20Material.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:908049
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178650
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156319
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133935
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-24T10:13:55Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-24T10:13:55Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-24T10:13:55Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21