000908050 001__ 908050
000908050 005__ 20230123110625.0
000908050 0247_ $$2doi$$a10.1122/8.0000400
000908050 0247_ $$2ISSN$$a0148-6055
000908050 0247_ $$2ISSN$$a1520-8516
000908050 0247_ $$2Handle$$a2128/31271
000908050 0247_ $$2WOS$$aWOS:000761448700001
000908050 037__ $$aFZJ-2022-02347
000908050 082__ $$a530
000908050 1001_ $$0P:(DE-HGF)0$$aParisi, D.$$b0
000908050 245__ $$aUnderlying mechanism of shear-banding in soft glasses of charged colloidal rods with orientational domains
000908050 260__ $$aMelville, NY [u.a.]$$bInst.$$c2022
000908050 3367_ $$2DRIVER$$aarticle
000908050 3367_ $$2DataCite$$aOutput Types/Journal article
000908050 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654780745_28295
000908050 3367_ $$2BibTeX$$aARTICLE
000908050 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908050 3367_ $$00$$2EndNote$$aJournal Article
000908050 520__ $$aSoft glasses of colloidal rods (fd-virus particles) with orientational domains were recently shown to exhibit inhomogeneous flow profiles [Dhont et al., Phys. Rev. Fluids 2, 043301 (2017)]: fracture and accompanied plug flow at small shear rates, which transits to gradient shear-banding on increasing the shear rate, while a uniform flow profile develops at sufficiently high shear rates. These flow profiles coexist with Taylor-vorticity bands. The texture of such glasses under flow conditions consists of domains with varying orientations. The observed gradient shear-banding was solely attributed to the strong shear thinning behavior of the material inside the domains (henceforth abbreviated as domain-interior), without considering the texture stress that is due to interactions between the glassy domains. Here, we present new experiments on the shear-banding transition to assess the role played by the texture stress in comparison to the domain-interior stress. For a large concentration, well into the glassy state, it is found that both texture stress and domain-interior stress contribute significantly to the gradient shear-banding transition in the shear-rate region where it occurs. On the other hand, for a small concentration close to the glass-transition concentration, the domains are shown to coalesce within the shear-rate range where gradient shear-banding is observed. As a result, the texture stress diminishes and the domain-interior stress increases upon coalescence, leading to a stress plateau. Thus, a subtle interplay exists between the stresses arising from the structural order on two widely separated length scales from interactions between domains and from the rod-rod interactions within the domain-interior for both concentrations.I. INTRODUCTION
000908050 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000908050 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908050 7001_ $$00000-0003-0866-1930$$aVlassopoulos, D.$$b1
000908050 7001_ $$0P:(DE-Juel1)130773$$aKriegs, H.$$b2
000908050 7001_ $$0P:(DE-Juel1)130616$$aDhont, J. K. G.$$b3$$ufzj
000908050 7001_ $$0P:(DE-Juel1)130749$$aKang, K.$$b4$$eCorresponding author
000908050 773__ $$0PERI:(DE-600)1461060-7$$a10.1122/8.0000400$$gVol. 66, no. 2, p. 365 - 373$$n2$$p365 - 373$$tJournal of rheology$$v66$$x0148-6055$$y2022
000908050 8564_ $$uhttps://juser.fz-juelich.de/record/908050/files/8.0000400.pdf$$yOpenAccess
000908050 8564_ $$uhttps://juser.fz-juelich.de/record/908050/files/Invoice_JOR21-AR-00264_00019.pdf
000908050 8767_ $$8JOR21-AR-00264_00019$$92022-02-08$$d2022-02-11$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200177325 ; USD 2500,-
000908050 909CO $$ooai:juser.fz-juelich.de:908050$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908050 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000908050 9101_ $$0I:(DE-HGF)0$$60000-0003-0866-1930$$aExternal Institute$$b1$$kExtern
000908050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130773$$aForschungszentrum Jülich$$b2$$kFZJ
000908050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b3$$kFZJ
000908050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130749$$aForschungszentrum Jülich$$b4$$kFZJ
000908050 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000908050 9141_ $$y2022
000908050 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908050 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000908050 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908050 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000908050 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-05$$wger
000908050 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-05
000908050 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-05
000908050 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-05
000908050 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-05
000908050 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ RHEOL : 2021$$d2022-11-05
000908050 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-05
000908050 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-05
000908050 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-05
000908050 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-05
000908050 920__ $$lyes
000908050 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000908050 9801_ $$aFullTexts
000908050 980__ $$ajournal
000908050 980__ $$aVDB
000908050 980__ $$aUNRESTRICTED
000908050 980__ $$aI:(DE-Juel1)IBI-4-20200312
000908050 980__ $$aAPC