001     908050
005     20230123110625.0
024 7 _ |a 10.1122/8.0000400
|2 doi
024 7 _ |a 0148-6055
|2 ISSN
024 7 _ |a 1520-8516
|2 ISSN
024 7 _ |a 2128/31271
|2 Handle
024 7 _ |a WOS:000761448700001
|2 WOS
037 _ _ |a FZJ-2022-02347
082 _ _ |a 530
100 1 _ |a Parisi, D.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Underlying mechanism of shear-banding in soft glasses of charged colloidal rods with orientational domains
260 _ _ |a Melville, NY [u.a.]
|c 2022
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654780745_28295
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Soft glasses of colloidal rods (fd-virus particles) with orientational domains were recently shown to exhibit inhomogeneous flow profiles [Dhont et al., Phys. Rev. Fluids 2, 043301 (2017)]: fracture and accompanied plug flow at small shear rates, which transits to gradient shear-banding on increasing the shear rate, while a uniform flow profile develops at sufficiently high shear rates. These flow profiles coexist with Taylor-vorticity bands. The texture of such glasses under flow conditions consists of domains with varying orientations. The observed gradient shear-banding was solely attributed to the strong shear thinning behavior of the material inside the domains (henceforth abbreviated as domain-interior), without considering the texture stress that is due to interactions between the glassy domains. Here, we present new experiments on the shear-banding transition to assess the role played by the texture stress in comparison to the domain-interior stress. For a large concentration, well into the glassy state, it is found that both texture stress and domain-interior stress contribute significantly to the gradient shear-banding transition in the shear-rate region where it occurs. On the other hand, for a small concentration close to the glass-transition concentration, the domains are shown to coalesce within the shear-rate range where gradient shear-banding is observed. As a result, the texture stress diminishes and the domain-interior stress increases upon coalescence, leading to a stress plateau. Thus, a subtle interplay exists between the stresses arising from the structural order on two widely separated length scales from interactions between domains and from the rod-rod interactions within the domain-interior for both concentrations.I. INTRODUCTION
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Vlassopoulos, D.
|0 0000-0003-0866-1930
|b 1
700 1 _ |a Kriegs, H.
|0 P:(DE-Juel1)130773
|b 2
700 1 _ |a Dhont, J. K. G.
|0 P:(DE-Juel1)130616
|b 3
|u fzj
700 1 _ |a Kang, K.
|0 P:(DE-Juel1)130749
|b 4
|e Corresponding author
773 _ _ |a 10.1122/8.0000400
|g Vol. 66, no. 2, p. 365 - 373
|0 PERI:(DE-600)1461060-7
|n 2
|p 365 - 373
|t Journal of rheology
|v 66
|y 2022
|x 0148-6055
856 4 _ |u https://juser.fz-juelich.de/record/908050/files/8.0000400.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/908050/files/Invoice_JOR21-AR-00264_00019.pdf
909 C O |o oai:juser.fz-juelich.de:908050
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0003-0866-1930
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130773
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130616
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130749
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J RHEOL : 2021
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21